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Abstract

Social scientists are frequently interested in assessing the qualities of social settings

such as classrooms, schools, neighborhoods, or day care centers. The most common

procedure requires observers to rate social interactions within these settings on multiple

items and then to combine the item responses to obtain a summary measure of setting

quality. A key aspect of the quality of such a summary measure is its reliability. In

this paper we derive a confidence interval for reliability, a test for the hypothesis that

the reliability meets a minimum standard, and the power of this test against alterna-

tive hypotheses. Next, we consider the problem of using data from a preliminary field

study of the measurement procedure to inform the design of a later study that will test

substantive hypotheses about the correlates of setting quality. The preliminary study

is typically called the “generalizability study” or “G-study” while the later, substantive

study is called the “decision study” or “D-study.” We show how to use data from the

G study to estimate reliability, a confidence interval for the reliability, and the power

of tests for the reliability of measurement produced under alternative designs for the

D study. We conclude with a discussion of sample size requirements for G studies.

KEY WORDS: Confidence Interval; D Study; G Study; Power; Reliability; Teaching

Quality.

1 Introduction

Social scientists often seek information about the quality of social processes occurring in

groups, including for example, after-school programs (e.g., Hirsch and Wong 2005), teacher

professional development programs (e.g., Kinzie et al. 2005), comprehensive school reform

programs (e.g., Borman et al. 2005), training programs for coaches (e.g., Smith et al. 2007),

and day care centers (e.g., Pianta et al. 2005). Ratings of setting quality may be regarded as

predictors of youth outcomes or as outcomes in studies of interventions designed to improve

setting quality. For concreteness in this paper, we focus on the classroom as the key setting of
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interest, and our interest focuses on the quality of teaching that occurs within each classroom,

though the methods we propose apply to many other settings.

Policy makers and educators seek objective measures of teaching quality for use in evalu-

ating teachers, helping teachers improve instruction, and studying the impact of interventions

that aim to improve teaching and learning. One of the most popular methods for obtaining

such measures is to assign trained observers to visit a classroom, rating the teaching on a

series of, say, n items, to be aggregated into an overall score, typically a mean.1 Because

raters vary in their skill, we can expect variability between their ratings of a given class at

a given time. For this reason, it often makes sense to dispatch more than one rater to each

classroom and then to aggregate over rater responses, thereby averaging over the random

rater differences. The reliability of the summary measure of teaching on any occasion then

depends on the variability in the item responses within ratings, the number of items, the

heterogeneity among the raters, and the number of raters. One may also wish to aggregate

over occasions within a teacher, though our interest in this paper is the reliability of the

measure for capturing the quality of teaching defined on a single occasion.

The reliability of the measure is an important criterion in various studies of teaching

quality. In intervention studies designed to detect the impact of a teacher training program

on teaching quality, low reliability of the measure of teaching quality will constrain the

statistical power of the study. In another study, the measure of teaching quality may serve

as an explanatory variable where the outcome is student learning. In this case, low reliability

will not only reduce power but also produce a biased estimate unless care is taken to adjust

for measurement error (Raudenbush and Sadoff 2008; Shin and Raudenbush 2010).

1.1 Goals for the Paper

In this paper, we aim to achieve two goals. First, we derive confidence intervals for

reliability, tests of the hypothesis that the reliability achieves a given minimum bound, and

1An alternative, increasingly popular approach is to obtain videotapes of classroom interactions and to
rate the teaching observed on the videotape. This facilitates multiple ratings of each class at each occasion.
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the power of those tests against alternative hypotheses. We show how the sample sizes,

including the number of classrooms sampled, the number of raters to rate a classroom, and

the number of items, affect the width of the confidence intervals and the power of the tests.

These effects of sample sizes depend, of course on estimated variance components, and we

discuss this relationship.

Second, we consider the problem of how to use data from a preliminary study of the

measurement procedure to inform the design of a larger study that will test hypotheses

about the associations between classroom quality and other variables. Specifically, we show

how to use data from the preliminary study to estimate reliability, a confidence interval

for the reliability, and the power of tests for the reliability of measurement produced under

alternative designs for the later study. We simulate confidence intervals for the later study,

and these intervals take into account the uncertainty about variance component estimates

in the preliminary study. These results have implications for the design of the preliminary

study itself.

1.2 Generalizability Studies

Because of the importance of obtaining reliable measures of teaching quality, educational

researchers have recently carried out a number of field studies the aim of which is to assess

reliability and to inform decisions about the optimal number of items per measure and raters

per classroom. Such a field study is commonly known as a “generalizability study,” or “G

study” (c.f. Brennan 2001). The G study provides information about the relative importance

of various sources of error of measurement, for example, errors arising from different items

or raters. The idea is to use the results of the G study to plan the measurement protocols

in what is called the “decision study” or “D study,” the study that will generate conclusions

about the impact of an intervention or the association between variables in a population. If

the G study is useful, it will provide some assurance that the measurement procedures used

in the D study are cost effective in insuring adequate reliability of measurement.
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One problem with this line of work has been that the G studies rarely produce confidence

intervals for the anticipated reliability in the D study. Instead, the G study typically produces

point estimates of this reliability so that planners of the D study have no sense of how much

uncertainty is associated with the conclusions based on the G study. The question then arises

about how large the sample sizes in a G study must be to obtain reasonable estimates of the

reliability in the D study. Robert Brennan, a pioneering leader in educational measurement,

has labeled the unknown uncertainty about reliability measures as “the Achilles heel” of

research on sources of error in educational measurement (Brennan 2001). Brennan (2001)

gives a comprehensive overview on parametric and nonparametric estimation of standard

errors and approximate confidence intervals for variance components and their ratios in

analysis of variance. Burdick and Graybill (1992) provide details on estimation of confidence

intervals for variance components and their ratios. However, the reliability itself, which is a

function of these variance components, is typically an important numerical indicator of the

quality of the measure and is directly related to the attenuation bias that will arise when

this measure is correlated with other variables (Raudenbush and Sadoff 2008). We want to

use the variance estimates and their standard errors from a G study to estimate or predict

a confidence interval for the reliability that will be obtained in the D study, and we want to

assess the power of tests of the minimum bound for the reliability obtained in the D study.

1.3 Approaches

One might imagine that a field study would insure that every rater would observe each and

every classroom. However, such a design is generally too costly. An often-used alternative is

an incomplete balanced block design: One assigns K raters and J classrooms to each of B

blocks. Every rater within a block observes every classroom within that block, yielding K

ratings for each of the J classrooms within the block, with KJ ratings per block and KJB

ratings overall.

To clarify the logic of our approach, the next section begins with simple case of a field
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study for which B = 1, that is, there is a single block. Section 3 then elaborates to the

general case of B blocks. Section 4 shows how to use the results of a G study to plan a D

study. The Discussion section follows at last.

2 One Complete Block

Before we consider a reasonably general study of B blocks, it is instructive to study a

simple design where every rater rates every classroom. This creates one complete block. Let

K raters rate each of J classrooms on n instruction items. Based on the model presented

below, this section expresses reliability as a function of variance components and sample

sizes, derive the estimators for the variance components and thus for the reliability, and then

expresses power to detect a desired level of reliability and a confidence interval for reliability.

2.1 Model

The model of interest is expressed as

Yijk = µ + αj + βk + (αβ)jk + ǫijk (1)

where Yijk is a rating score, µ is the grand mean, αj ∼ N(0, σ2
α) is the main effect of classroom

j, βk ∼ N(0, σ2
β) is the main effect of rater k, (αβ)jk ∼ N(0, σ2

αβ) is the interaction effect

between classroom j and rater k and ǫijk is a random error involving instruction item i for

i = 1, 2, · · · , n, j = 1, 2, · · · , J and k = 1, 2, · · · , K. A more elaborate model may specify

main and interaction effects involving items. For example, we may express ǫijk as an addition

of orthogonally decomposed random components ǫijk = γi + (γα)ij + (γβ)ik + (γαβ)ijk for

the main effect γi ∼ N(0, σ2
γ) of item i, the interaction effect (γα)ij ∼ N(0, σ2

γα) between

item i and classroom j, the interaction effect (γβ)ik ∼ N(0, σ2
γβ) between item i and rater k

and the three-way interaction effect (γαβ)ijk ∼ N(0, σ2
γαβ) among item i, classroom j and

rater k. In the generalizability theory framework (Brennan 2001), this model has a fully
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crossed item × classroom × rater design where classrooms are the objects of measurement

and where raters and items are random facets. However, we want to focus our paper on

the basic logic of reliability, confidence intervals and power and minimize mathematically

complicated expressions. Therefore, we assume γi = (γα)ij = (γβ)ik = 0 which simplifies

the fully crossed model to the model (1) where ǫijk = (γαβ)ijk. As we will show in the next

section, this assumption does not restrict the fully crossed model as much as it seems to

do. Having clarified the logical core of the problem in this comparatively simple case, the

next steps in our future research will involve generalizing that logic to a broader range of

designs and outcome types. We illustrate the developed methods via analysis of data from

Classroom Assessment Scoring System (CLASS) that uses a 7 point scale for each item where

the median responses tend to be around 3 or 4 with quite symmetric distributions (La Paro

et al. 2004; Raudenbush et al. 2010).

2.2 Reliability

The measure of classroom quality is µ + αj in the model (1). The purpose of the studies

we aim to inform is to compare classrooms on a measure of classroom quality. Therefore,

we focus on the deviation score αj whose observed measure is α̂j = Ȳ.j. − Ȳ... for Ȳ.j. =

∑K
k=1

∑n
i=1 Yijk/(nK) and Ȳ... =

∑J
j=1 Ȳ.j./J . We define reliability of the observed classroom

effects given σ2
α, σ2

αβ and σ2 as

λα(n,K) =
σ2

α

σ2
α + σ2

αβ/K + σ2/(nK)
(2)

which is the correlation between the observed effects of a classroom over a pair of randomly

parallel realizations of the measurement procedure. That is, λα(n,K) = cor(α̂1
j , α̂

2
j ) where

α̂1
j = Ȳ 1

.j. − Ȳ 1
... is an estimator of αj based on a random sample of K raters and n items from

large populations of raters and items, respectively, and α̂2
j = Ȳ 2

.j. − Ȳ 2
... is a second estimator

based on a second random sample of K raters and n items from the same populations. In
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the generalizability theory framework, the observed mean and universe scores for classroom

j are Ȳ.j. and µ + αj respectively. Then, the observed and universe deviation scores for the

classroom are Ȳ.j.−Ej(Ȳ.j.) = αj+(αβ)j.+ǭ.j. and αj respectively for the expectation Ej taken

over the units of classrooms, (αβ)j. =
∑

k(αβ)jk/K and ǭ.j. =
∑

k

∑
n ǫijk/(nK). The variance

of the difference in the two deviation scores yields relative error variance var
[
(αβ)j. + ǭ.j.

]
=

σ2
αβ/K + σ2/(nK). Reliability equation (2) is a generalizability coefficient,2 the ratio of

var(µ + αj) to var(µ + αj) + var
[
(αβ)j. + ǭ.j.

]
(Brennan 2001). Equation (2) is also the

reliability of the classroom effect estimator α̂j, var(αj)/var(α̂j) = J
J−1

λα(n,K) ∝ λα(n,K).

2.2.1 What Determines Reliability?

Equation (2) depends on variances and sample sizes. The three variance components of

the reliability estimate work in the following ways:

1. The more heterogenous the classrooms are in quality, the larger will be the between-

classroom variance σ2
α and therefore the larger will be the reliability;

2. The more raters disagree when they observe a classroom, the larger will be the rater-

by-classroom variability σ2
αβ and therefore the lower the reliability;

3. The more inconsistent the items are, the larger will be the item variance σ2 and there-

fore the lower the reliability.

2.2.2 How Should Resources Be Allocated?

Because Equation (2) also depends on two sample sizes, it reveals how to allocate resources

as follows:

2The item× classroom× rater design has a generalizability coefficient
σ2

α

σ2
α+σ2

αβ
/K+σ2

γα/n+σ2

γαβ
/(nK)

which

simplifies to the equation (2) under a single assumption of no item-by-classroom interaction effect, i.e.
σ

2
γα = 0. Therefore, the model (1) does not restrict the fully crossed design as much as it seems to do in

terms of the reliability.
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1. The larger the number K of raters who observe a given classroom, the higher the

reliability, assuming either σ2
αβ > 0 or σ2 > 0 or both. Increasing K will be especially

helpful in increasing reliability when σ2
αβ or σ2 is large.

2. Adding items will increase the reliability whenever σ2 > 0. Adding items will be

especially helpful when σ2 is large.

3. Increasing n or K or both will increase the reliability when σ2
αβ is small but σ2 is large.

However, there may be tradeoffs. Suppose, for example, it is very expensive to train

raters and very cheap to increase the number of items. Then, increasing n rather than

K will be much more cost effective in boosting reliability. In contrast, if increasing K

is cheap but increasing n is expensive, for example, in generating and validating a new

instrument, then increasing K will be more cost effective than will increasing n, and

this assertion will be even more true when σ2
αβ is also appreciable.

2.3 Estimation

Reasonable effect estimators are µ̂ = Ȳ..., α̂j = Ȳ.j. − Ȳ..., β̂k = Ȳ..k − Ȳ..., and ̂(αβ)jk =

Ȳ.jk − Ȳ.j. − Ȳ..k + Ȳ... for Ȳ.jk =
∑n

i=1 Yijk/n and Ȳ..k =
∑J

j=1 Ȳ.jk/J . The sums of squares are

SSA = nK
∑

j α̂2
j , SSB = nJ

∑
k β̂2

k , SSAB = n
∑

k

∑
j

̂(αβ)
2

jk and SSE =
∑

k

∑
j

∑
i ǫ̂

2
ijk for

ǫ̂ijk = Yijk − µ̂ − α̂j − β̂k − ̂(αβ)jk so that the expected mean squares are

E(MSA) = E[SSA/(J − 1)] = nKσ2
α + nσ2

αβ + σ2, (3)

E(MSB) = E[SSB/(K − 1)] = nJσ2
β + nσ2

αβ + σ2,

E(MSAB) = E{SSAB/[(J − 1)(K − 1)]} = nσ2
αβ + σ2,

E(MSE) = E{SSE/[JK(n − 1)]} = σ2.
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Equating each mean square to its expectation and solving for the parameters yield

σ̂2 = MSE (4)

σ̂2
αβ = (MSAB − MSE)/n

σ̂2
α = (MSA − MSAB)/(nK)

σ̂2
β = (MSB − MSAB)/(nJ).

A reasonable estimator for the reliability (2) is

λ̂α = 1 − MSAB

MSA
. (5)

The mean rating for classroom j as the measure of teaching quality is of interest to

educators. The estimator for the mean rating is µ̂ + α̂j = Ȳ.j. ∼ N(µ, σ2
j ) for σ2

j = σ2
α +

σ2
β/K + σ2

αβ/K + σ2/(nK). Then, a (1 − s) × 100% confidence interval for the mean rating

µ + αj of classroom j is

Ȳ.j. ± t1−s/2,JK × σ̂j (6)

for the (1 − s/2) ∗ 100th percentile t1−s/2,JK from the t distribution with JK degrees of

freedom and σ̂2
j = σ̂2

α + σ̂2
β/K + σ̂2

αβ/K + σ̂2/(nK).

2.4 Hypothesis Test and Power

Our interest in this section is in deriving the power with which we can reject a null

hypothesis that the reliability equals a given minimum bound in favor of an alternative

hypothesis that the reliability will exceed the given minimum bound. In the appendix, we
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show that a ratio of unreliability to unreliability estimator for B = 1 is

F (λα) =
1 − λα

1 − λ̂α

∼ FJ−1,(J−1)(K−1) (7)

for 1
1−λ̂α

= MSA
MSAB

and FJ−1,(J−1)(K−1), the F distribution with J − 1 numerator and (J −

1)(K − 1) denominator degrees of freedom. Let fJ−1,(J−1)(K−1),β denote the β-quantile from

FJ−1,(J−1)(K−1). We have the following:

Theorem 2.1 Suppose that we want to test H0 : λα = λα0 against an alternative hypothesis

Ha : λα > λα0 at a significance level s and let f s
0 = fJ−1,(J−1)(K−1),1−s. Under the Ha, the

power to detect λα = λα1 > λα0 is

P

[
F (λα1) > f s

0

1 − λα1

1 − λα0

]
. (8)

Proof The random variable (7) implies that the test statistic under H0 : λα = λα0 is

F (λα0) = 1−λα0

1−λ̂α

∼ FJ−1,(J−1)(K−1) for λα0 ≥ 0 such that P [F (λα0) > f s
0 ] = s. Then, un-

der Ha : λα > λα0, the power to detect λα = λα1 > λα0 is equal to P
[

1−λα0

1−λ̂α

> f s
0

]
=

P
[
F (λα1) > f s

0
1−λα1

1−λα0

]
where F (λα1) = 1−λα1

1−λ̂α

∼ FJ−1,(J−1)(K−1).

The power depends positively on λα1 but negatively on f s
0 and λα0. Consequently, given f s

0

and λα0, the higher the n or the K in the study given variance components, the higher the

λα1(n,K) in equation (2), and thus the higher the power. Moreover, the larger the number

of classrooms J or raters K in the study, the lower the f s
0 and thus the higher the power

although the impact on f s
0 of K is relatively weak to that of J .

Equation (8) may be reexpressed to find an effective reliability size

λα,1−β = 1 − fJ−1,(J−1)(K−1),β × (1 − λα0)/f
s
0 (9)

that achieves a desired power of (1 − β) given λα0 and f s
0 . In designing a study, the study

planner may select a desired reliability size with adequate power in equation (9) and then
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set it equal to the reliability in equation (2).

2.5 Confidence Interval for Reliability

In this section, we derive a confidence interval for the reliability of measurement whose

width represents the level of uncertainty involved in a study design. The confidence interval

facilitates selection of the design with the minimal uncertainty among feasible study designs.

The following theorem expresses a confidence interval for λα:

Theorem 2.2 Let (1 − λ̂α) = MSAB
MSA

. A (1 − s) × 100 % confidence interval for λα is

1 − (1 − λ̂α) ×
(
fJ−1,(J−1)(K−1),1−s/2, fJ−1,(J−1)(K−1),s/2

)
. (10)

Proof The random variable (7) implies

1 − s = P
[
(1 − λ̂α)fJ−1,(J−1)(K−1),s/2 < 1 − λα < (1 − λ̂α)fJ−1,(J−1)(K−1),1−s/2

]

= P
[
1 − (1 − λ̂α)fJ−1,(J−1)(K−1),s/2 > λα > 1 − (1 − λ̂α)fJ−1,(J−1)(K−1),1−s/2

]
.

The width (10) depends positively on two quantities:

1 − λ̂α =
MSAB

MSA
= 1 − σ̂2

α

σ̂2
α + σ̂2

αβ/K + σ̂2/(nK)
, (11)

(
fJ−1,(J−1)(K−1),s/2, fJ−1,(J−1)(K−1),1−s/2

)
. (12)

Therefore, given the variance component estimates, the larger the n or the K in the study,

the lower the unreliability estimator (11), and thus the narrower the confidence interval (10).

Moreover, the larger the number of classrooms J or raters K ceteris paribus in the study,

the narrower the interval (12) and thus, the narrower the confidence interval (10) although

the impact on the width (12) of K is relatively weak to that of J . Given variance component

estimates and sample sizes, the model (1) may be simulated to generate the confidence

interval (10). An illustrative simulation will be given for general B ≥ 1 in this paper.
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2.6 Expected Confidence Interval for Reliability

Simulating confidence interval (10) for reliability may take too long to generate useful

results. It is helpful to have an alternative method that enables study planners to compare

the uncertainty involved in multiple study designs within a reasonable amount of time. To

do that, we express a (1 − s) × 100% expected confidence interval (10) as

1 − (J − 1)(1 − λα)

J − 3
×

(
fJ−1,(J−1)(K−1),1−s/2, fJ−1,(J−1)(K−1),s/2

)
(13)

where E
(

MSAB
MSA

)
= (J−1)(1−λα)

J−3
for MSAB

MSA(1−λα)
∼ F(J−1)(K−1),J−1. Then, the study planner

may explore multiple study designs to select one that minimizes the expected width (13),

that is, the expected uncertainty.

A study design has its true population reliability (2) as a function of the sample sizes given

the true variance components. If randomly parallel measurement procedures or replications

of the study design were to repeat many times and produce as many estimated confidence

intervals (10), then (1 − s) × 100% of the intervals would capture the true reliability. The

expected interval (13) represents the average estimated interval. The smaller the s, the more

likely this interval is to contain the true reliability.

3 B Incomplete Blocks

It is costly to have every rater rate every classroom. A study becomes cost effective

if KB raters and JB classrooms are divided into B incomplete blocks. Each block has J

classrooms and randomly assigned K raters where each rater rates n instruction items for

each classroom. This creates a balanced incomplete randomized block design.
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3.1 Model

A reasonably general model for such a design is

Yijkb = µ + γb + αjb + βkb + (αβ)jkb + ǫijkb (14)

where Yijkb is a rating score, µ is the grand mean, γb ∼ N(0, σ2
γ) is the effect of block

b, αjb ∼ N(0, σ2
α) is the main effect of classroom j, βkb ∼ N(0, σ2

β) is the main effect of

rater k, (αβ)jkb ∼ N(0, σ2
αβ) is the interaction effect between classroom j and rater k and

ǫijkb ∼ N(0, σ2) is a random error involving instruction item i for i = 1, 2, · · · , n, j = 1, · · · , J ,

k = 1, 2, · · · , K and b = 1, 2, · · · , B. Equation (14) is the model (1) for B = 1. An effective

blocking scheme yields classrooms more homogeneous within than across blocks. Schools or

school districts, for example, may be such blocks. Such a blocking scheme controls for the

block differences due to, for example, high-performing and low-performing schools such that

the inferences on the classroom quality are precise and generalizable to the classrooms in

all such schools. Because raters are randomly assigned to blocks, it is reasonable to assume

that the rater effects are not different across blocks.

3.2 Reliability

The reliability of α̂jb = Ȳ.j.b − Ȳ...b for Ȳ.j.b =
∑

k

∑
i Yijkb/(nK) and Ȳ...b =

∑
j Y.j.b/J is

identical to the equation (2). Therefore, the statements about the equation (2) are also valid

for the reliability.

3.3 Estimation

Reasonable estimators for µ, γb, αjb, βkb and (αβ)jkb are µ̂ = Ȳ...., γ̂b = Ȳ...b − Ȳ...., α̂jb =

Ȳ.j.b−Ȳ...b, β̂kb = Ȳ..kb−Ȳ...b,
̂(αβ)jkb = Ȳ.jkb−Ȳ.j.b−Ȳ..kb+Ȳ...b and ǫ̂ijkb = Yijkb−Ȳ.jkb for Ȳ.jkb =

∑n
i=1 Yijkb/n, Ȳ..kb =

∑J
j=1 Ȳ.jkb/J and Ȳ.... =

∑
b Ȳ...b/B. The sums of squares are SSG =

nJK
∑

b γ̂2
b , SSA = nK

∑
b

∑
j α̂2

jb, SSB = nJ
∑

b

∑
k β̂2

kb, SSAB = n
∑

b

∑
k

∑
j

̂(αβ)
2

jkb and
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SSE =
∑

b

∑
k

∑
j

∑
i ǫ̂

2
ijkb. Then, the expected mean squares are

E(MSG) = E[SSG/(B − 1)] = nJKσ2
γ + nKσ2

α + nJσ2
β + nσ2

αβ + σ2 (15)

E(MSA) = E{SSA/[(J − 1)B]} = nKσ2
α + nσ2

αβ + σ2

E(MSB) = E{SSB/[(K − 1)B]} = nJσ2
β + nσ2

αβ + σ2

E(MSAB) = E{SSAB/[(J − 1)(K − 1)B]} = nσ2
αβ + σ2

E(MSE) = E{SSE/[JKB(n − 1)]} = σ2.

By equating each mean square to its expectation and solving for the parameters, we obtain

the variance estimators (4), the reliability estimator (5) and

σ̂2
γ = (MSG − MSA − MSB + MSAB)/(nJK). (16)

The mean rating for classroom j within block b as the classroom measure of teaching

quality is µ+γb +αjb. The estimator is µ̂+ γ̂b + α̂jb = Ȳ.j.b ∼ N(µ, σ2
jb) for σ2

jb = σ2
γ +σ2

α/J +

σ2
β/K + σ2

αβ/(JK) + σ2/(nJK). A (1− s)× 100% confidence interval for a classroom mean

rating µ + γb + αjb is

Ȳ.j.b ± t1−s/2,JKB × σ̂jb (17)

for the (1 − s/2) ∗ 100th percentile t1−s/2,JKB from the t distribution with JKB degrees of

freedom and σ̂2
jb = σ̂2

γ + σ̂2
α/J + σ̂2

β/K + σ̂2
αβ/(JK) + σ̂2/(nJK).

3.4 Hypothesis Tests and Power

In this section, we express the power to reject H0 : λα = λα0 in favor of an alternative

hypothesis that the reliability will exceed the given minimum bound λα0. In the appendix,
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we show that the ratio of unreliability to unreliability estimator is

F (λα) =
1 − λα

1 − λ̂α

∼ F(J−1)B,(J−1)(K−1)B (18)

for 1 − λ̂α = MSAB/MSA. We have the following theorem:

Theorem 3.1 Suppose that we want to test a null hypothesis H0 : λα = λα0 against an alter-

native hypothesis Ha : λα > λα0 at a significance level s and let f s
0 = f(J−1)B,(J−1)(K−1)B,1−s.

Under the Ha, the power to detect λα = λα1 > λα0 is equation (8).

Proof The random variable (18) implies the test statistic F (λα0) = 1−λα0

1−λ̂α

∼ F(J−1)B,(J−1)(K−1)B

under H0 : λα = λα0 for λα0 ≥ 0 such that P [F (λα0) > f s
0 ] = s. Then, under Ha : λα > λα0,

the power to detect λα = λα1 > λα0 is P
[

1−λα0

1−λ̂α

> f s
0

]
= P

[
F (λα1) > f s

0
1−λα1

1−λα0

]
where

F (λα1) ∼ F(J−1)B,(J−1)(K−1)B.

Just as in the case where B = 1, we see that the power depends positively on λα1 but

negatively on f s
0 and λα0 and the same observations about the power (8) above also applies

here. Moreover, the larger the JB ceteris paribus, the lower the f s
0 and thus the higher the

power. Given λα0 and f s
0 , the power (8) may be reexpressed as an effective reliability size

λα,1−β = 1 − f(J−1)B,(J−1)(K−1)B,β × (1 − λα0)/f
s
0 (19)

that achieves a desired power of (1 − β).

3.5 Estimating a Confidence Interval for Reliability

Our aim in this section is to express a confidence interval for λα that will be achieved in

the study and to illustrate how the width changes across multiple study designs on average.

Theorem 3.2 Let (1 − λ̂α) = MSAB
MSA

. A (1 − s) × 100% confidence interval for λα is

1 − (1 − λ̂α) ×
(
f(J−1)B,(J−1)(K−1)B,1−s/2, f(J−1)B,(J−1)(K−1)B,s/2

)
. (20)
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This result follows from the proof for Theorem 2.2 where we replace f(J−1),(J−1)(K−1),s/2 and

f(J−1),(J−1)(K−1),1−s/2 with f(J−1)B,(J−1)(K−1)B,s/2 and f(J−1)B,(J−1)(K−1)B,1−s/2 respectively. The

confidence interval (20) depends positively on two quantities: equation (11) and

(
f(J−1)B,(J−1)(K−1)B,s/2, f(J−1)B,(J−1)(K−1)B,1−s/2

)
. (21)

Consequently, the larger the n or the K given variance estimates, the lower the unreliability

estimator (11), the narrower the width (20) and thus the less uncertainty will be involved in

the study. In addition, the larger the number of classrooms JB or raters K ceteris paribus

in the study, the narrower the interval (21) and thus, the narrower the confidence interval

(20). In the next section, we show how to simulate the confidence interval (20) based on the

model (14) and to compare the uncertainty across multiple study designs.

The expected value of the confidence interval (20) is a useful alternative in comparing

the amount of uncertainty involved across multiple study designs in a reasonable amount of

time. A (1 − s) × 100% expected confidence interval may be expressed as

1 − (J − 1)B(1 − λα)

(J − 1)B − 2
×

(
f(J−1)B,(J−1)(K−1)B,1−s/2, f(J−1)B,(J−1)(K−1)B,s/2

)
(22)

where E
(

MSAB
MSA

)
= (J−1)B(1−λα)

(J−1)B−2
for MSAB

MSA(1−λα)
∼ F(J−1)(K−1)B,(J−1)B.

3.6 Properties of Reliability Estimator (5)

From MSAB
MSA(1−λα)

∼ F(J−1)(K−1)B,(J−1)B, we have E(λ̂α) = 1 − (J−1)B(1−λα)
(J−1)B−2

→ λα as JB →

∞. In addition, var(λ̂α) = var
(

MSAB
MSA

)
≈ 2K(1−λα)2

(K−1)(J−1)B
for JB large that can be made

arbitrarily small as JB increases. Because E(λ̂α−λα)2 < E(λ̂2
α)−2E(λ̂α)2 +λ2

α = var(λ̂α)+

[λ2
α − E(λ̂α)2] → 0 as JB → ∞, for ǫ > 0, we have

P (|λ̂α − λα| ≥ ǫ) = P
[
(λ̂α − λα)2 ≥ ǫ2

]

≤ E(λ̂α − λα)2/ǫ2 → 0 as JB → ∞
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by Markov’s inequality. Therefore, λ̂α is asymptotically unbiased and consistent with its

variance tending to zero as JB increases. The Theorems 3.1 and 3.2 depends on the exact

distribution (18) based on the model (14).

3.7 Illustrative Example

In this section, we consider variance component estimates (σ2
α, σ2

β, σ2
αβ, σ2) = (0.11, 0.29, 0.11, 0.39)

from the variance component analysis of the CLASS used in the Multi-State Study of Pre-

Kindergarten (MSSPK) by the National Center for Early Development (Raudenbush et al.

2010) and show how to use the power (8) and the expected confidence interval (22) to be

informative about the design for a study.

Given the variance components, Figure 1 shows the impact of alternative study designs

on power (8) and reliability size (19) for testing H0 : λα = 0.5 VS Ha : λα > 0.5 at a

significance level s = 0.05. Graph (a) draws power (8) against the number of JB classrooms

Figure 1: Each graph draws power (8) against JB for K = 2, 4, 8 given J = 20, λα0 = 0.5
and f0.05

0 . Across graphs, n increases from 5 to 10 to 15. The legend shows λ(n,K).

ranging 20 to 240 classrooms given n = 5 items and J = 20 classrooms per block. The legend

displays λ(n,K) and indicates that the solid, thick-dotted and thin-dotted lines are for the

frequency of rating each classroom by 2, 4, or 8 raters respectively. Graphs (b) and (c) are

drawn identically except for n = 10 and n = 15 items given respectively. Within the range of
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the study design, it is hard to obtain adequate power and reliability size given K = 2 raters.

As the number of K raters increases given other sample sizes, the power and the reliability

size increase markedly. The impact of increasing n from 5 to 10 items is noticeable on the

power as well as the reliability, but the impact grows weak when n changes from 10 to 15

items, ceteris paribus. Increasing the number of JB classrooms increases the power but does

not affect the reliability size given variances and other sample sizes. Graph (a) also reveals

that increasing the number of JB classrooms does not yield decent power and reliability size

with low sample sizes (n,K) = (5, 2).

To illustrate the general utility of the expected confidence interval (22), Figure 2 draws

λα(n,K) and the interval on the vertical axis that will be achieved against alternative study

designs (a) K given (n, J,B) = (15, 20, 3); (b) n given (K, J,B) = (2, 20, 3); (c) J given

(n,K,B) = (15, 2, 3); and (d) B given (n,K, J) = (15, 2, 20) on the horizontal axis. A

Figure 2: Graphs (a) to (d) draw the reliability and the expected 95% confidence interval
(22) that will be achieved against study designs (a) K given (n, J,B) = (15, 20, 3); (b) n
given (K, J,B) = (2, 20, 3); (c) J given (n,K,B) = (15, 2, 3); and (d) B given (n,K, J) =
(15, 2, 20) on the horizontal axis.

reliability value is plotted as a dot. As the number of raters K increases, the reliability (2)

rises and the expected confidence interval (22) shrinks markedly in the graph (a). The strong

impact of increased K on the reliability and the expected width is most pronounced in the

low range of K ≤ 5. As the number of items n increases in the graph (b), the reliability
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rises and the expected confidence width narrows at low values of n, but the impact becomes

very weak from n ≈ 10. The reliability, not a function of J and B given variances, stays

constant in the graphs (c) and (d). As J or B grows in the graphs, the expected confidence

intervals shrink quickly at low values, but slowly at high values of J or B. Therefore, the

increased number of raters exhibits the most pronounced impact in increasing the reliability

and narrowing the confidence interval (20) on average. Overall, the impact of sample sizes

has a diminishing return in reducing the expected uncertainty in the study. This implies

that it is important to have all sample sizes above the respective low ranges to capitalize on

the strong impact.

Thus far, we have derived a confidence interval for reliability, a test for the hypothesis

that the reliability meets a minimum bound, and the power of this test against alternative

hypotheses that can apply to either G or D study. In the next section, we illustrate how to

use a G study to compare the alternative designs for a D study.

4 Using a G study to Compare Alternative Designs for

a D Study

We now show how to use the results from a G study to inform the design of a D study. The

unknown true variance components are assumed to stay constant over time. If the G-study

sample sizes were infinite, one would know the variance components. One could then simply

substitute these known values into equation (2) to compute reliability for given sample sizes

(nD, KD), to be used in the D study. One would then select the sample sizes for the D study

that achieved acceptable reliability at minimum cost. In reality, of course, the G study will

have a finite sample, so that the variance components will be estimated with error. The

point estimates and their uncertainty estimates depend on the sample sizes of the G study.

Consequently, the estimates as well as the G study design are informative about the design

of a D study. In this section, we consider, as the G-study variance component estimates,
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θ̂ = (σ̂2
α, σ̂2

β, σ̂2
αβ, σ̂2) = (0.11, 0.29, 0.11, 0.39) from the MSSPK, and show how to use the G

study to inform the design of a D study. We consider H0 : λα = 0.5 against Ha : λα > 0.5 at

a significance level s throughout this section.

4.1 Determining Sample Sizes in the D Study

The variance estimates produce a reliability estimate λ̂α = λ̂α(nD, KD) = λα(θ̂, nD, KD) =

0.11
0.11+0.11/KD+0.39/(nDKD)

for a D-study design as an ordered pair (nD, KD). The test rejects

H0 if P [F > (1− 0.5)/(1− λ̂α)] < s for F ∼ F(JG−1)BG,(JG−1)(KG−1)BG
given a G-study design

(nG, KG, JGBG). Then, letting λα1 = λ̂α under Ha : λα = λα1 > 0.5 produces the power of

the test P
[
F > f s

0
1−λα1

1−0.5

]
for f s

0 = f(JG−1)BG,(JG−1)(KG−1)BG,1−s that will be achieved in the D

study. A (1 − s) × 100% confidence interval for λα that is anticipated in the D study is

1 − (1 − λ̂α) ×
(
f(JG−1)BG,(JG−1)(KG−1)BG,1−s/2, f(JG−1)BG,(JG−1)(KG−1)BG,s/2

)
. (23)

Note that neither the confidence interval nor the power depends on nG given the variance

estimates from the G study. The MSSPK is a study of JGBG = 240 classrooms from preschool

to third grade, 40 classrooms in each of 6 states (BG = 6). Out of a total of 26 raters available

from August 2001 to June 2002 (Raudenbush et al. 2010), we approximate KG ≈ 4 raters

per block. The study planner may now select, among feasible D-study designs {(nD, KD)}

given the G-study results, the design (n∗

D, K∗

D) that produces the desired reliability, power

and uncertainty represented as the width of the confidence interval (23) at minimal cost.

In the next two sections, we assume that θ̂ was obtained under hypothetical G-study

designs {(nG, KG, JGBG)}, and illustrate, given the θ̂, the impacts of the G-study designs

and feasible D-study designs (the sample sizes) on reliability, power and confidence interval

that will be obtained in a D study.
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4.2 Estimating Statistical Power in the D Study

To illustrate the impacts of D-study sample sizes (nD, KD) and G-study sample sizes

(nG, KG, JGBG) on reliability and power that will be obtained in the D study, we con-

sider a small set of values of KD ∈ {1, 2, 3, 4, 8} for the D study. This simplification im-

plies that, for any particular choice nD, we consider 5 possible D-study designs, that is

(nD, 1), (nD, 2), (nD, 3), (nD, 4) and (nD, 8). Finally, we will consider a set of hypotheti-

cal G-study designs {(nG, KG, JGBG)} with KG ∈ {2, 4, 8}. Therefore, for every choice of

(nG, JGBG), we have 3 possible G-study designs, that is (nG, 2, JGBG), (nG, 4, JGBG) and

(nG, 8, JGBG).

Figure 3 compares the impacts of D-study designs {(nD, KD)} and G-study designs

{(nG, KG, JGBG)} on reliability and power given JG = 20. The number of items nD in-

creases from 5 to 10 to 15 across the three rows given KD while the number of raters KD

changes from 2 to 3 to 4 to 8 across the four columns given nD. The graphs for KD = 1

do not appear in the Figure because one rater produces the reliability sizes λα1(nD, 1) equal

to 0.37, 0.42 and 0.45 for nD =5, 10 and 15 respectively, below the acceptable minimum

reliability λα0 = 0.5. Therefore, KD = 1 is not useful within the range of the G-study

designs {(nG, KG, JGBG)}. In each graph, power on the vertical axis is drawn against the

total number of classrooms JGBG ranging 20 to 240 on the horizontal axis. The legend in

graph (a) applies to all graphs and indicates that the solid, thick-dotted and thin-dotted

lines draw power against JGBG for KG = 2, 4 and 8 given JG = 20 respectively. The D-study

design (nD, KD) and the λα1(nD, KD) are displayed on top of each graph. As KD increases

across columns given nD, both λα1 and power increase dramatically. As the number of nD

items increases across rows given KD, both λα1 and power also increase. The reliability and

the power increase appreciably from nD = 5 to 10, but relatively weakly from nD = 10

to 15, given KD. Within each graph, power increases as the sample sizes JGBG and KG

increase in the G study. Therefore, a D-study design (nD, KD) as well as a G-study design

(nG, KG, JGBG) are positively associated with the power.
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Figure 3: Each graph draws power (8) against JGBG for KG = 2, 4, 8 given JG = 20, λα0 = 0.5
and f 0.05

0 = f(JG−1)BG,(JG−1)(KG−1)BG,0.95. Across rows, nD increases from 5 to 10 to 15 while
across columns, KD changes from 2 to 3 to 4 to 8. The legend in graph (a) applies to all
graphs.

4.3 Estimating Uncertainty in the D study

This section illustrates the impacts of D-study and G-study sample sizes on the confidence

interval for reliability that will be obtained in the D study. To show the impacts, we may

simulate a G study based on the model (14) given, say, µ = 1, σ2
γ = 0.2 and θ equal

to the G-study variance component estimates used above. As an illustrative example, we

simulate a G-study design (nG, KG, JGBG) = (5, 4, 10 × 6) one thousand times to produce

1000 confidence intervals (23) for each of the feasible D-study designs {(nD, KD)} considered

in Figure 3. Then, the 1000 widths may be drawn in a boxplot to represent the uncertainty
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that will be anticipated for a D study under the feasible D-study design (nD, KD). The

narrower the widths overall, the lower the boxplot, and therefore the less uncertainty will be

in the D study.

Figure 4: Graphs (a), (b), (c) and (d) are drawn given KD =2,3,4 and 8 respectively. Each
graph draws three boxplots for nD =5,10 and 15 respectively given KD. Each boxplot
draws the widths of the 1000 confidence intervals (23) for λα given a specific D-study design
(nD, KD). The horizontal axis labels the D-study sample size nD.

Figure 4 displays the boxplots. The vertical axis for each boxplot represents the widths

of the 1000 confidence intervals given a specific D-study design (nD, KD). Each of the four

graphs (a) to (d) draws three boxplots for nD =5,10 and 15 respectively given KD. Graphs

(a), (b), (c) and (d) are given KD=2,3,4 and 8 respectively and, otherwise, drawn in the

same way. Across graphs (a) to (d), we see the dramatic reduction in uncertainty that is

anticipated in the D study as the number of KD raters increases given nD. Within each

graph, we see the (relatively weak) decrease in the uncertainty as the number of nD items

increases given KD.

Although the boxplots in Figure 4 are revealing, they are all drawn given a single G-study

design (nG, KG, JGBG) = (5, 4, 10 × 6). Unlike the plots in Figure 3 on power, they do not

show us the impacts of multiple G-study and D-study designs on the uncertainty anticipated

in the D study. Moreover, it took six hours to simulate the G-study design to produce Figure
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4 by a fully automated procedure in the statistical software package R on a laptop computer

with a 2.53 GHz processor and 3 GB memory. Although it takes only minutes to produce

the results with smaller designs, it takes much longer to produce the results with a larger

design. Therefore, it is desirable to use an alternative method that compares the impacts

of multiple G-study and D-study designs on the uncertainty within a reasonable amount of

time without regard to the sample sizes. The expected confidence interval (22) for reliability

provides one such method.

Under Ha : λα = λα1 > 0.5, the expected confidence interval that will be obtained in the

D study may be expressed as

1 − (JG − 1)BG(1 − λα1)

(JG − 1)BG − 2
×

(
f(JG−1)BG,(JG−1)(KG−1)BG,1−s/2, f(JG−1)BG,(JG−1)(KG−1)BG,s/2

)
.(24)

Figure 5 illustrates the impacts of D-study sample sizes and G-study sample sizes on reli-

ability and the expected confidence interval (24). It has the main heading on top of each

graph, G- and D-study sample sizes, horizontal axis labels and the legend that are identi-

cal to and set up identically to those of Figure 3. It only replaces each graph of power in

Figure 3 with one of the expected confidence intervals (24) represented on the vertical axis.

Each graph has solid, thick-dotted and thin-dotted confidence intervals for KG = 2, 4 and 8

respectively given the same JGBG, which had to be jittered not to overlap. In each graph,

the expected confidence interval and the reliability size λα1 (the dots) on the vertical axis

are drawn against the total number of classrooms JGBG ranging 20 to 240 given JG = 20

on the horizontal axis. The D-study design (nD, KD) and the λα1(nD, KD) are displayed

on top of each graph in an identical way to the corresponding graph of Figure 3. As KD

increases across columns given nD, the λα1 increases and the expected uncertainty decreases

dramatically. As the number of nD items increases across rows given KD, λα1 increases

and the expected interval shrinks, but relatively weakly. Within each graph, the expected

interval reduces as the sample sizes JGBG and KG increase in the G study. Therefore, both
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Figure 5: Each graph draws expected confidence intervals (24) and reliability sizes as dots
on the vertical axis. Otherwise, G-study and D-study sample sizes, the legend, horizontal
axis labels and the heading on top of each graph are identical to those of Figure 3.

D-study design (nD, KD) and G-study design (nG, KG, JGBG) are positively associated with

the expected uncertainly (24).

5 Discussion

In this paper, we expressed the reliability for the measure of teaching quality of a classroom

as the correlation between the observed effects of the classroom over a pair of randomly

parallel realizations of the measurement procedure. We derived a confidence interval for the
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reliability, a test for the hypothesis that the reliability meets a minimum standard, and the

power of the test against alternative hypotheses for the design of a study. Then, we showed

how to inform the design of a D study based on the inferences drawn with uncertainty from

a G study. Illustrative examples showed how to compare alternative D-study designs in

terms of their reliability sizes, uncertainty and powers that will be achieved in the D study

given the variance components estimated with error in the G study. Because the variance

component estimates and their uncertainty estimates in the G study depend on the sample

sizes of the G study, the estimates as well as the G study design are informative about the

design of a D study.

Illustrative examples revealed diminishing return of increasing sample sizes in improving

reliability size and power and reducing the uncertainty of a reliability estimate. Therefore, it

seems wise to capitalize on the strong impact of low-range sample sizes in designing a study.

The lower bound of the confidence interval (23) for λα may be negative in particular

when the frequency of rating each classroom in the G or D study is small. In Figure 4

where the frequency KG = 4 is modest, the simulation generates 2.3% of the lower bounds

negative for (nD, KD) = (5, 2), and 0.1 to 0.4% of lower bounds negative for others except

for (nD, KD) = (15, 4) and KD = 8 where all lower bounds are positive. The likelihood of

λα is defined between 0 and 1. The negative lower bound was set to zero to produce Figure

4. Designs with the smaller frequency of rating each classroom produce more negative lower

bounds. To reduce the lower bounds going out of the proper range, the confidence interval

may be based on a 95% highest density interval. In our simulation involving multiple study

designs with 2 raters where more than 20 % of the generated lower bounds may be negative

in some severe cases, the highest-density 95% confidence interval for reliability reduced the

negative lower bounds by approximately 30%.

The developed methods and their illustrations in this paper are based on a model that

may be too simple for some cases. First, they do not involve logistics and cost in sample size

determination. For example, high cost may limit the number of raters available for a study.
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Next, a more elaborate model may have interaction effects involving items; rating scores

depending on measurement time of the day; and raters rating a classroom inconsistently

across measurement times of the day. Consequently, a study may be longitudinal involving

multiple occasions nested within each classroom which adds an additional facet to the model

(14). Moreover, the outcome variable may be nonnormal. Furthermore, selection of an

optimal design for a field study may involve an unbalanced design due to, for example,

attrition and non-responses in the model (14) where njkb items are rated in Jb classrooms by

Kb raters within block b for b = 1, · · · , B. Therefore, useful future extensions of the methods

presented in this paper may involve cost, logistics and a series of more elaborate models.

We analyzed data from Classroom Assessment Scoring System (CLASS) that uses a 7

point scale for each item where the median responses tend to be around 3 or 4 with quite

symmetric distributions (La Paro et al. 2004). With nonnormal sample data, the robustness

of Theorems 3.1 and 3.2 against the departures from the assumed normality of the model

(14) should be examined. Note that reliability (2) is not associated with variances in the

rated scores due to rater or block differences and that the derivation of the distribution (18)

in the Appendix does not depend on rater and block effects. Consequently, the Theorems

are quite robust against the departures from the assumed normality of the rater or block

effects. However, the violation of the model assumptions may come from other effects which

could be checked by, for example, plotting the estimates such as the classroom effect esti-

mates Ȳ.j.b − Ȳ...b. Then, such a departure from the model assumptions may be simulated,

and the robustness of the Theorems against such a violation may be assessed. Therefore,

developing sensitivity analysis for violations of our model assumptions, including normality

assumptions, is a valuable topic for future research.

Appendix: Derivation of Equation (18)

Let γ̄. =
∑

b γb/B, ᾱ.b =
∑

j αjb/J , ᾱ.. =
∑

b α.b/B, β̄.b =
∑

k βkb/K, β̄.. =
∑

b β.b/B,

(αβ)j.b =
∑

k(αβ)jkb/K, (αβ).kb =
∑

j(αβ)jkb/J , (αβ)..b =
∑

k(αβ).kb/K, (αβ)... =
∑

b(αβ)..b/B,
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ǭ.jkb =
∑

i ǫijkb/n, ǭ..kb =
∑

j ǭ.jkb/J , ǭ.j.b =
∑

k ǭ.jkb/K, ǭ...b =
∑

j ǭ.j.b/J and ǭ.... =
∑

j ǭ...b/B.

Reasonable estimators for γb, αjb, βkb, (αβ)jkb and ǫijkb may be expressed as

γ̂b = (γb + ᾱ.b + β̄.b + (αβ)..b + ǭ...b) − (γ̄. + ᾱ.. + β̄.. + (αβ)... + ǭ....) (25)

α̂jb = (αjb + (αβ)j.b + ǭ.j.b) − (ᾱ.b + (αβ)..b + ǭ...b)

β̂kb = (βkb + (αβ).kb + ǭ..kb) − (β̄.b + (αβ)..b + ǭ...b)

ǫ̂ijkb = ǫijkb − ǭ.jkb

(αβ)jkb + ǭ.jkb = ̂(αβ)jkb + {[(αβ)j.b + ǭ.j.b] − [(αβ)..b + ǭ...b]} + [(αβ).kb + ǭ..kb]

where
√

nJK(γb + ᾱ.b + β̄.b + (αβ)..b + ǭ...b) ∼ N(0, nJKσ2
γ + nKσ2

α + nJσ2
β + nσ2

αβ + σ2)

independent across blocks b,
√

nK(αjb +αβj.b + ǭ.j.b) ∼ N(0, nKσ2
α +nσ2

αβ +σ2) independent

across classrooms j and blocks b,
√

nJ(βkb+(αβ).kb+ǭ..kb) ∼ N(0, nJσ2
β+nσ2

αβ+σ2) indepen-

dent across raters k and blocks b,
√

n[(αβ)jkb + ǭ.jkb] ∼ N(0, nσ2
αβ + σ2) independent across

classrooms j, raters k and blocks b,
√

nK[(αβ)j.b+ ǭ.j.b] ∼ N(0, nσ2
αβ +σ2) across j and b, and

√
nJ [(αβ).kb+ǭ..kb] ∼ N(0, nσ2

αβ+σ2) across k and b. When squared and summed over nJKB

units, the last equation has
∑

b

∑
k

∑
j n{(αβ)jkb+ǭ.jkb−[(αβ)..b+ǭ...b]}2 ∼ (nσ2

αβ+σ2)χ2
(JK−1)B

on the left hand side, and
∑

b

∑
k

∑
j n ̂(αβ)

2

jkb +
∑

b

∑
j nK{[(αβ)j.b + ǭ.j.b]− [(αβ)..b + ǭ...b]}2 +

∑
b

∑
k nJ{[(αβ).kb+ ǭ..kb]− [(αβ)..b+ ǭ...b]}2 on the right hand side where

∑
b

∑
j nK{[(αβ)j.b+

ǭ.j.b]−[(αβ)..b+ ǭ...b]}2 ∼ (nσ2
αβ +σ2)χ2

(J−1)B and
∑

b

∑
k nJ{[(αβ).kb+ ǭ..kb]−[(αβ)..b+ ǭ...b]}2 ∼

(nσ2
αβ +σ2)χ2

(K−1)B. The three terms on the right hand side are independent and must add to

have (nσ2
αβ +σ2)χ2

(JK−1)B, which implies that
∑

b

∑
k

∑
j n ̂(αβ)

2

jkb ∼ (nσ2
αβ +σ2)χ2

(J−1)(K−1)B.

As γ̂b, α̂jb, β̂kb,
̂(αβ)jkb and ǫ̂ijkb are independent, so are

SSG

nJKσ2
γ + nKσ2

α + nJσ2
β + nσ2

αβ + σ2
∼ χ2

B−1, (26)

SSA

nKσ2
α + nσ2

αβ + σ2
∼ χ2

(J−1)B,

SSB

nJσ2
β + nσ2

αβ + σ2
∼ χ2

(K−1)B,
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SSAB

nσ2
αβ + σ2

∼ χ2
(J−1)(K−1)B,

SSE

σ2
∼ χ2

(n−1)JKB.

Consequently, we have

MSA/(nKσ2
α + nσ2

αβ + σ2)

MSAB/(nσ2
αβ + σ2)

=
1 − λα

1 − λ̂α

∼ F(J−1)B,(J−1)(K−1)B. (27)

References

[1] Bartlett, M.S. and Kendall, D.G. (1946). The Statistical Analysis of Variance-

Heterogeneity and the Logarithmic Transformation, Journal of the Royal Statistical

Society, Suppl. 8, 128-138.

[2] Borman,G ., Slavin, R. E., Cheung,A ., ChamberlainA, ., Madden,N . A., and Chambers,

B. (2005). The national randomized field trial of Success for All: Second-year outcomes.

American Educational Research Journal, 42, 673-696.

[3] Burdick, R.K. ana Graybill, F.A. (1992). Confidence Intervals on Variance Components.

New York: Dekker.

[4] Brennan, R.L. (2001). Generalizability theory. New York: Springer-Verlag.

[5] Hirsch, B.J., and Wong, V. (2005). After-school programs. In D.L. DuBois and M.J.

Karcher (Eds.), Handbook of youth mentoring (pp. 364-375). Thousand Oaks, CA: Sage.

[6] Kinzie, M., Whitaker, S., Neesen, K., Kelley, M., Matera, M. and Pianta, R. (2005).

State-wide Web-based Professional Development & Curricula for Early Childhood Edu-

cators: Design & Infrastructure. In G. Richards (Ed.), Proceedings of World Conference

on E-Learning in Corporate, Government, Healthcare, and Higher Education 2005 (pp.

814-821). Chesapeake, VA: AACE.

29



[7] La Paro, K., Pianta, R. and Stuhlman, M. (2004). The Classroom Assessment Scoring

System: Findings from the Prekindergarten Year, The Elementary School Journal, 104,

409-426.

[8] Pianta, R., Howes, C., Burchinal, M., Bryant, D., Clifford, R., Early, D. and Bar-

barin, O. (2005). Features of Pre-Kindergarten Programs, Classrooms, and Teachers:

Do They Predict Observed Classroom Quality and ChildTeacher Interactions? Applied

Developmental Science, 9, 144-159.

[9] Raudenbush, S.W. and Bryk, A.S. (1987). Examining Correlates of Diversity, Journal

of Educational Statistics, 12, 241-269.

[10] Raudenbush, S.W., Martinez, A., Bloom, H., Zhu, P. and Lin, F. (2010). Studying the

Reliability of Group-Level Measures with Implications for Statistical Power: A Six-Step

Paradigm, University of Chicago Working Paper.

[11] Raudenbush, S.W. and Sadoff, S. (2008). Statistical Inference When Classroom Quality

is Measured With Error, Journal of Research on Educational Effectiveness, 1, 138-154.

[12] Shin, Y. and Raudenbush, S. W. (2010). A Latent Cluster Mean Approach to The

Contextual Effects Model with Missing Data. JEBS, 35, 26-53.

[13] Smith, R. E., Smoll, F. L., and Cumming, S. P. (2007). Effects of a motivational climate

intervention for coaches on young athletes’ sport performance anxiety. Journal of Sport

and Exercise Psychology, 29, 39-59.

30


