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Abstract 

Many youth development programs aim to improve youth outcomes by raising the 

quality of social interactions occurring in groups such as classrooms, athletic teams, 

therapy groups, after-school programs, or recreation centers. As a result, evaluators are 

increasingly interested in determining whether such programs significantly improve 

“group quality.” We consider methods for studying the reliability of measures of group 

quality, with implications for the design of evaluation studies, and we illustrate these 

methods using a large-scale data set on classroom observations. Our approach enables the 

analyst to compare options for improving reliability, including increasing the number of 

raters per classroom, increasing the number or length of occasions of measurement, or 

improving the training of raters. These inferences depend on model assumptions, and we 

develop and illustrate a method for testing the sensitivity of these inferences to errors of 

model misspecification. We then consider the implications of such investments for the 

statistical power of experiments that assess the impact of intervention on group quality. 

Our six-step approach extends generalizability theory and uses it to improve research on 

environments in which youth develop. 
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I. Introduction 

Many programs aim to improve youth outcomes by improving the quality of 

social processes occurring in groups within which youth develop. This is the case, for 

example, for after-school programs (e.g., Hirsch and Wong, 2005), teacher professional 

development programs (e.g., Kinzie, Whitaker, Neesen, Kelley, Matera, and Pianta, 

2005), comprehensive school reform programs (e.g., Borman, Slavin, Cheung, 

Chamberlain, Madden, and Chambers, 2005), and training programs for coaches (e.g., 

Smith, 2006). Whether the programs are athletic, educational, social, or therapeutic, they 

commonly operate on groups such as teams, schools, classrooms, or therapy groups, and 

seek to promote high-quality social interactions among the members of the group to 

ultimately improve the skill, knowledge or emotional regulation of the participating 

youths.  

 The programs we focus on are thus based on a theory that has two parts: 1) a 

theory of how the program changes group quality; and 2) a theory of how group quality 

affects youth outcomes. Knowing whether a program affects group quality is essential to 

understanding when, why, and how it affects the outcomes of participating individuals.  

To see why, consider first a study in which groups were randomly assigned to one 

of two conditions (program versus control) and evaluators found no impact of the 

program on personal outcomes. Assume that the study had adequate statistical power and 

that the personal outcomes were well measured. Two possibilities emerge. 

 First, it may be that the program improved group quality in all the ways intended 

but that the persons in the program group failed to benefit from the changes in group 

functioning. For example, suppose that a teacher-training intervention caused teachers to 
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change their methods of classroom instruction in all the ways intended, but the 

instructional changes produced no change in student achievement. Clearly, the underlying 

theory about the link between group quality (in this case, instructional quality) and person 

outcomes (in this case, student achievement) was incorrect.  On the other hand, it may be 

that the program had little or no impact on group quality. In this case, the theory about 

how improved group quality affects youth outcomes was never tested!  

 Suppose that the evaluators did not administer a reliable and valid measure of 

group quality. Then it would not be possible to distinguish between these two 

contradictory explanations for the finding of no program effect on youth outcomes, and it 

would be difficult to draw any conclusions for the study that might guide future program 

development.  

 Even in a happier scenario in which the evaluation did produce convincing 

evidence of a positive effect on youth outcomes, interpretation depends on knowing 

whether the intervention changed group quality in the ways intended. If the intended 

group changes did not occur, then the program must have had its effect on persons 

through channels that the program designers failed to anticipate. Knowing this result is 

particularly important in attempts to reproduce the positive effect in a new setting.  

In sum, assessing the impact of a program on group quality is essential in building 

a science of intervention to improve youth outcomes. In this article we focus on how to 

assess the reliability of group quality measures, and on how to design studies of 

interventions that aim to improve group quality. 
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The Interrelated Problems of Measurement and Power 

 If the advancement of intervention science requires an understanding of how the 

intervention affects group quality, the reliable and valid measurement of group quality is 

essential. Yet, the measurement of neighborhoods, schools, classrooms, day care centers, 

community centers, after-school programs, and other group settings is comparatively 

under-developed despite more than a century of intense interest in measuring personal 

attributes such as cognitive skill and personality. Raudenbush and Sampson (1999) used 

the term “ecometrics” to refer to the science of validly measuring ecological settings, as 

distinct from the much more thoroughly developed science of measuring psychological 

attributes, widely known as “psychometrics.” 

 Although valid measurement is essential, our focus here is in one aspect of valid 

measurement, namely, reliability. Reliability is the consistency of results of applying a 

measurement procedure under conditions that vary in ways deemed irrelevant to the true 

value of what is being measured. One cannot make valid inferences about group quality 

based on unreliable data. Reliability is thus a necessary if not sufficient condition for 

valid inference about the quality of a group’s functioning. Motivating our focus on 

reliability is its influence on a study’s statistical power. Low reliability will weaken 

statistical power, thus diminishing the chance of discovering true intervention effects on 

group quality.  

 A cost-benefit trade-off arises in designing studies to have high power. The 

resources available can be used to increase the number of groups in the study or, given a 

fixed number of groups, to obtain more reliable measures. For example, an experimenter 

using observations to assess classroom quality can typically enhance reliability by 
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improving rater training, dispatching multiple raters to the same classroom, or observing 

each classroom on multiple occasions. Such enhancements cost money – money that 

could instead be used to increase sample sizes. So a smart analysis of the costs and 

benefits associated with increasing reliability is in order. This paper presents a conceptual 

framework for investigating these trade-offs so that researchers can make efficient uses of 

available resources to enhance power. In addition, the paper illustrates how such analyses 

can be done using a large data set of classroom observations. 

 We draw heavily on generalizability theory (Cronbach and Gleser, 1965; 

Brennan, 2001), a widely used approach among psychometricians for quantifying 

multiple sources of measurement error. We expand this approach in several ways. First, 

because rater effects tend to be large in observational studies of classrooms, we re-

formulate the model to illuminate the potential benefit of increasing the number of raters 

per classroom to investing more in rater training. Second, we suggest methods for 

sensitivity analysis, enabling the investigator to explore the likely practical significance 

of omitting relevant sources of measurement error from the model used to analyze the 

data. Third, we explicitly link improvements in measurement to gains in statistical power 

for detecting the impact of interventions on group quality. These augmentations to 

generalizability theory lead us then to recommend a “six-step” paradigm for studying 

errors of measurement. 
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Background 

Generalizability theory (GT), introduced by Cronbach, Gleser, Nanda, and 

Rajaratnam (1972)2, provides a framework for conceptualizing and investigating the 

sources of error in a measure. Brennan (1977, 1992a, 1992b, 2001), Shavelson, Webb 

and Rowley (1989), and Shavelson and Webb (1991) have developed, extended, and 

applied GT. The theory links a methodological study to the design of a penultimate 

substantive study. 

Two Kinds of Studies  

Our ultimate interest is the design of a study to test the effectiveness of the 

program in improving group quality. Following the language of GT, we call this the 

“decision study” (D-study), because it will inform decisions about the value of the 

interventions. To inform the design of this study requires preliminary information from a 

“generalizability study” (G-study), the purpose of which is to quantify the sources of 

error that arise in the measurement process. Subject to cost constraints, the G-study 

enables the researcher to minimize errors of measurement in the D-study. A well-

designed G-study can produce information about: 

 the relative importance of various sources of error, including, for example, rater 

inconsistency, temporal instability, and item inconsistency; 

                                                 
 
2 An earlier presentation to the key ideas in GT can be found in Lindquist (1953). Also, Cronbach, 
Rajaratnam and Gleser (1963) and Gleser, Cronbach and Rajaratnam (1965) present GT explicitly though 
more succinctly than Cronbach, Gleser, Nanda, and Rajaratnam in their 1972 seminal book. Gleser et al. 
(1965), in particular, apply GT to study the adequacy of generalizations made from a set of observations 
that are classifiable according to two aspects of the measuring process and show how to use estimates of 
the variance components to design more efficient studies.  
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 the likely benefits of measurement re-design (e.g., recruiting more raters, training 

them better, observing more often, using more items) in improving reliability and 

therefore power; 

 the impact of measurement reliability on the statistical power of the primary 

study;  

 the minimum detectable treatment effect size that the primary study can detect 

with a pre-set level of power.  

Application of G-Theory to the Measurement of Social Settings 

GT has been used extensively to analyze person-level measures. Its use for 

studying classroom-level measures is less common, though there are some examples 

(e.g., Gillmore, Kane, & Naccarato, 1978; Kane & Brennan, 1977; Kane, Gillmore & 

Crooks, 1976; McGaw, Wardrop, & Bunda, 1972; Smith, 1979). In related prior work, 

Raudenbush, Rowan, and Kang (1991) developed a multivariate, three-level hierarchical 

linear model to investigate sources of error in studies of school climate measured by 

interviewing teachers. They showed how adding more items can reduce the effect of item 

inconsistency on school-level reliability. More importantly, sampling more teachers per 

school is important when the reports of teachers attending the same school are somewhat 

inconsistent. Raudenbush and Sampson (1999) combined GT and item response theory to 

assess the reliability and validity of measures of social and physical disorder in urban 

neighborhoods.  

In this article, we consider observations that have been obtained by trained raters 

on multiple occasions. None of the earlier work that we are aware of, however, discusses 

the framework we propose for investigating the trade-offs associated with the 
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measurement of group quality, the sensitivity of results to key model assumptions, or the 

statistical power of evaluation studies.   

 In the G-study, we explicitly represent the potential sources of error in a 

theoretical model. In practice, however, the data actually collected may not pick up every 

source of error represented in this model. We therefore also define an observational 

model. The relationship between the theoretical and the observational models will inform 

about the quality of the design of the reliability study. A well-designed G-study can be 

extremely useful to insure that the resources available for the primary study are 

efficiently used to maximize statistical power. In contrast, a poorly designed G- study 

may provide little new information or—worse—actually mis-inform research designers 

about the reliability they can anticipate in the primary study, leading to poor choice of 

sample size and incorrect calculations of power for the primary study.  

 Given the possibility that the observational model under-identifies the theoretical 

model, it is essential to explicitly state the assumptions under which the observational 

model gives correct results. These “identifying assumptions” will typically not be 

testable. However it is possible to test the sensitivity of the results to the failure of these 

assumptions. The idea is to vary the assumptions and watch for variation in the key 

conclusions. We therefore recommend and illustrate how such a sensitivity analysis can 

be conducted. 

 This reasoning leads us to build on GT to recommend a “six-step” paradigm for 

studying errors of measurement in group processes. Step 1 is to hypothesize the salient 

sources of measurement error and to combine these in a theoretical model. Step 2 is to 

design a study of these sources of error. No matter how well-designed such a study might 
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be, it will often not enable the researcher to isolate every source of error specified in the 

theoretical model. So this step requires one to write down a model for the observed data 

(the “observational model”) and to explicate the relationship between the theoretical 

model and the observational model. This step is crucial because it enables the investigator 

to explicate the assumptions under which the analytic results will apply. Step 3 defines 

these “identifying assumptions” by equating the sources of variance in the observational 

model to those in the theoretical model. In Step 4, one analyzes the data under the 

identifying assumptions and considers alternative options for maximizing reliability in 

light of the results. A key question then arises: how sensitive are the decisions based on 

such an analysis to the identifying assumptions? So, in Step 5, we undertake sensitivity 

analyses that explore the extent to which key conclusions vary under alternative 

assumptions. The result of this process is a range of plausible values for the reliability 

with which a specific study design can measure the outcome. Step 6 explores the 

implications of this range of plausible reliabilities for the statistical power of an 

evaluation study.  

III. An Empirical Case Study 

To illustrate how the proposed six-step framework can be applied in a realistically 

complex situation, we now examine the variance components of the Classroom 

Assessment Scoring System (CLASS) as used in the Multi-State Study of Pre-

Kindergarten (MSSPK) conducted by the National Center for Early Development (Pianta, 

Howes, Burchinal, Bryant, Clifford, Early & Barbarin, 2005). The MSSPK was not 

designed as a G-study and thus any limitations for examining reliability reflect the fact 

that doing so was not its original purpose. Nonetheless, the MSSPK is remarkable in 
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allowing estimation of sources of variation we believe to be theoretically important—

sources of variation typically ignored in past studies of classrooms. So we regard this 

study as particularly useful for our purposes and thank the authors of MSSPK for 

permission to use it. 

Measuring Instrument and Setting 

Researchers at the University of Virginia developed the CLASS to assess 

classroom quality in preschool through third-grade classrooms (Pianta, La Paro and 

Hamre, 2006).3 Its focus is the social and emotional environment within classrooms as 

manifested by interactions between teachers and students. Among the most extensively 

used classroom-observational instruments, CLASS has been important in the State-wide 

Early Education Programs Study (Clifford, et al., 2005) and the Early Child Care and 

Youth Development Study.4  

Using the CLASS, raters observe multiple “segments” per class per day. Each 

segment consists of 20 minutes of observation followed by 10 minutes of coding. Each 

segment yields a series of numeric assessments that are later aggregated into higher-order 

domains (Hamre, Mashburn, Pianta, Locasle-Crouch & La Paro, 2006). 

Step 1: Hypothesize sources of measurement error and specify a theoretical model  

 Sources of error. For the purposes of this case study, we consider classrooms, 

raters, segments, and days as the main sources of variance. The day variance arises 

because mean levels of classroom quality may vary from day to day. This variance, also 

referred to as the between-day variance, is distinct from the within-day variance, which is 

represented by the segments. We assume both of these sources of variation to be random 

                                                 
 
3 See http://www.classobservation.com/ for details.  
4 See http://www.nichd.nih.gov/research/supported/seccyd.cfm for details. 

http://www.classobservation.com/
http://www.nichd.nih.gov/research/supported/seccyd.cfm
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and focus only on “short-term” instabilities, regarded here as part of the error variance, 

alongside the rater variance. We deliberately omit other sources of variation, including 

item inconsistency, as plausible sources of error variance, to keep the example 

manageable.  

The following interactions are possible and all contribute, in theory, to the error 

variance: classroom-by-rater variance, reflecting the fact that differences between 

classrooms may vary across raters; classroom-by-day variance, the variation that arises 

when the difference between the ratings of two classrooms changes from day to day 

independent of the rater; rater-by-day variance, the variation that arises when the 

“toughness” or “leniency” of raters changes from day to day in a non-systematic way; 

rater-by-segment variance, the variation that arises when the “toughness” or “leniency” 

of raters changes from one segment to the next, within a day, in a non-systematic way; 

and classroom-by-day-by-rater variance, the variation that arises when the difference 

between the ratings of two classrooms changes from day to day and the changes in those 

differences vary from one rater to the next.  

Theoretical model. All these sources of variation are represented in the following 

theoretical model: 

         crdcdrsrdcdcrcdsdrccdrsy   )()()(   (1) 

Here,  represents the rating for classroom c obtained by rater r on segment s of day 

d; 

)cd(rsy

  is the mean across all observations; c , r , d , and )cd(s  are random effects 

associated with classrooms, raters, days and segments, respectively;  cr  is the 

classroom-by-rater interaction effect;  cd  is the classroom-by-day interaction effect; 
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 rd  is the rater-by-day interaction effect;   )cd(rs  is the rater-by-segment interaction 

effect; and   is the classroom-by-rater-by-day interaction effect.crd

cd

                                                

5  

A positive value of  indicates that classroom c has an above-average “true 

quality” and a positive value of  indicates that rater r gives, on average, more 

favorable ratings than does the average rater. Also, a positive value of  indicates 

that rater r rated classroom c higher than expected given the true quality of classroom c 

and the overall tendency of rater r to be lenient versus strict. The interaction terms 

,   and   can be estimated if the measurement study crosses at least 

some classrooms with raters, at least some classrooms with days, and at least some raters 

with days, respectively. Similarly, the classroom-by-rater-by-day interaction term, 

, can be estimated if the design crosses at least some classrooms, raters and days.  

c

r

 cr

 cr

 crd





rd

The subscript “rs(cd)” indicates that a segment is, by definition, nested within a 

given day for a given classroom. A segment is by definition a unique interval of life in a 

particular classroom in a particular day. This nesting precludes the interaction of the 

segment effect with the classroom effect and of the segment effect with the day effect. 

Thus the theoretical model does not contain a segment-by-classroom, a segment-by-day, 

a segment-by-classroom-by-day or a segment-by-classroom-by-day-by-rater interaction 

effect. However it is possible to have more than one rater per segment so the only 

interaction term for segments is the rater-by-segment interaction term, .    )(cdrs

 

c

 
5 Notice this model is equivalent to a three-way cross-classified model with random effects  , r  and 

  )()( cdrscdsd  in which the error term has been replaced by   .  
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In fully-crossed designs all the main effects and interactions presented in (1) are 

estimable. However, fully-crossed designs are not typically economically possible or 

even logistically feasible. Therefore, in reality, it is likely that some of the theoretical 

variance components turn out to be fully confounded.  

Yet, whatever the limitations particular designs may impose, we regard Equation 

(1) as the theoretical measurement model in which )  is a fallible measure (or 

“observed score”) of classroom quality, where  is the “true score,” and the 

expression 

cd(rsy

c 

         crd)cd(rscdcr)cd(sdr    

cd(rsy

rd   is the 

measurement error. The total variation of )  is  

  222222222
)(      dayxraterxclasssegmentxraterdayxraterdayxclassraterxclasssegmentdayraterclasscdrsyVar  

           (2) 

where  is “true-score variance” and the remaining terms constitute the “error 

variance.”  

2
class

Step 2: Design a study and specify the observational model 

Table 1 defines the design requirements for estimation of each source of variation 

in our theoretical model (Equation 1). The available CLASS data allow estimating 

some—but not al—of these sources. Thus our observational model will not fully map 

onto its theoretical counterpart. Let us consider the design of the MSSPK and its 

implications for the observational model. 

--- Insert Table 1 Here --- 
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The MSSPK is a descriptive study of C = 240 pre-school centers located in six 

states with one classroom per center and 40 centers from each state in the study.6 Data for 

the present analysis are from the August 2001 through June 2002 collection wave in 

which R = 26 raters participated. On average, each rater visited 15.8 classrooms; a 

classroom-rater combination was repeated, on average, on 2.6 different days, and 6 

segments were recorded for each classroom-rater-day combination, on average. In total, 

6,473 ratings were generated.7  

In the MSSPK, classrooms were never assessed at the same time by multiple 

raters. Therefore, the segment and the segment-by-rater variances are fully confounded. 

Actually no classroom was ever assessed by more than one rater on any given day, so the 

variance associated with the three-way interaction between classrooms cannot be 

estimated. We shall see that this three-way interaction is fully confounded with the 

classroom-by-day variance.  

In addition, not all the two-way interactions between classrooms, raters and days 

are estimable despite classrooms, raters and days all being partially crossed. The amount 

of crossing is not sufficient to stably estimate separately all the variances that arise from 

the two-way interactions of these three main effects. In the classroom-by-rater cross-

tabulation, 221 of the 240 classrooms are partially crossed with 25 of the 26 raters, so the 

                                                 
 

26R

6 As noted earlier, we use this descriptive study as a reliability study.  
7 These are arithmetic (not harmonic) means. The difference when the total sample size is calculated with 
these numbers is due to approximation and to some cases that were discarded. To be exact,  

(number of raters), 26/411rC 411/067,1crD (classrooms per rater),  (days per classroom-rater 

combination), and 067,1/390,6dcrS  (segments per day-classroom-rater combination). Thus the total 

sample size used is 390,6 dcrcrr SDCRN . The extra 83 cases (1.28%) were discarded because 

of missing data in the outcomes explored.  
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classroom-by-rater interaction variance can be estimated (see the appendix for more 

details).  

In principle, the classroom-by-day and the day-by-rater variances can also be 

estimated because classrooms and days were partially crossed and days and raters were 

also partially crossed. Yet these variances are confounded because the amount of crossing 

was insufficient to estimate them separately. In fact, no two raters ever observe a given 

classroom on the same day, and very rarely did a rater observe 2 classrooms on a given 

day (certainly never 3 or more classrooms on a given day). So the classroom-by-day 

variance cannot be distinguished from the day-by-rater variance. Since the variance of the 

three-way interaction between classrooms, raters and days was fully confounded with the 

classroom-by-day variance, this means that the classroom-by-day variance, the day-by-

rater variance and the classroom-by-rater-by-day variance are not separable from each 

other. As we shall see, an identifying assumption about the confounding of these 

theoretical variance components will be required to draw conclusions about the 

measurement properties of CLASS from this study.  

The variances associated with the main effects of classrooms, raters and days are 

all estimable and we assume are not confounded with the variances of their interactions. 

Of the 240 classrooms, 158 were observed by at least 2 raters. Of the remaining 82 

classrooms, 63 were observed by a rater who also observed at least one of the 158 

classrooms with multiple raters. Thus, in reality, 221 classrooms were partially crossed 

with raters. We thus see that the classroom-by-rater variation is not confounded with the 

classroom variation. In addition, all classrooms were observed on at least two days and at 

least two classrooms were observed in 158 of the 167 days. All classrooms and days were 
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then partially crossed and thus the classroom-by-day interaction is not confounded with 

the classroom variation.  

The observational model. The data actually collected thus give place to the 

following observational model:  

   ***
)(

***
)( rdcrcrdsdrccrdsy   .    (3) 

Notice first that the sub-index “s(crd)” is different from the one in the theoretical model 

(Equation 1). This indicates the nesting of segments within classrooms, days and raters. 

Notice also this model has 6 random effects, whereas the number of random effects in the 

theoretical model (Equation 1) is 9. The difference arises precisely because of the 

confounding of some of the theoretical variances. The superscript “*” is used here to 

annotate that the random effects (and their variances) in the observational model are not 

necessarily equal to their corresponding terms in the theoretical model.  

The relationship between the variance components in the theoretical model and 

those in the observational model is in Table 2. As shown, the variances for the main 

effects of classrooms, raters and days, and for the classroom-by-rater interaction effect, 

are estimable and match exactly their theoretical counterparts. In contrast, for the reasons 

discussed before, the classroom-by-day, the day-by-rater and the classroom-by-day-by-

rater variances are confounded in what is denoted  *rd , while the segment and the 

segment-by-rater variances are confounded in what is denoted .  *
)(crds

--- Insert Table 2 Here --- 

Because the estimate of classroom variance matches that of the theoretical model, 

model misspecification will not inflate or deflate the estimate of the “true-score” 

variance. In that sense, our data cannot mis-inform about the reliability of the classroom 



  18 
 

measure because there is no confounding with the true score. Rather, the confounding is 

in the error variance. Yet, the confounding in  *rd  and in  does not allow 

gathering full information on all the theoretical variance components and thus the design 

somewhat under-informs about the ways to improve the reliability: We cannot draw 

inferences about the separate sources of error variation in the theoretical model without 

making further assumptions.  

*
)(crds

Step 3: State identifying assumptions 

When the observational model does not match the theoretical model, which will 

typically be the case, the investigator must make some assumptions in order to proceed. 

The idea then is to make such “identifying assumptions.” In the current case, we make 

the following assumptions before checking sensitivity: 

1. We see from Table 2 that , meaning that the 

measurement study cannot separate the variance of the main effect of segments from the 

segment-by-rater interaction variance. We provisionally assume , in which 

case . 

222*
segmentxratersegmentsegment  

 02 segmentxrater

22*
segmentsegment  

2. Next, we see from Table 2 that . 

We provisionally assume , in which case . 

Our rationale is based on the assumption that what happens in classrooms does vary 

significantly from one day to the next while there is less a priori reason to believe that 

raters vary from day to day. Of course this assumption cannot be checked with the 

available data, and that fact leads us to rely on a sensitivity analysis to test the credibility 

of our results.  

2222*
dayxraterxclassdayxraterdayxclassdayxclass  

0dayxraterx
22*

xclassdayxclass  22  classdayxrater  day
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Under assumptions (1) and (2), the theoretical model and the observational model 

match, and the variance and reliability of the classroom means will become 

   
2*2*2*2*2*

2*
)(

cdc

segment

c

dayxclassday

c

raterxclassrater
classc SDDR

yVar


 





   (4) 

and  

 





















cdc

segment

c

dayxclassday

c

raterxclassrater
class

class
c

SDDR

y
2*2*2*2*2*

2*

2*

Rel





   (5) 

where Rc is the number of raters who observe each class, Dc is the number of days each 

class is observed, and Scd is the number of segments per class per day. Our sensitivity 

analyses (Step 5) will re-do the analysis below under a range of alternative assumptions. 

Step 4: Analyze the data and draw tentative conclusions under the identifying 

assumptions 

 We obtained restricted maximum likelihood estimates of the variance components 

from the observational model for a measure of instructional climate. This measure is a 

weighted composite of two factors measured by the CLASS: concept development and 

quality of feedback.8  

--- Insert Table 3 Here --- 

Fitting the observational model (Equation 3) yields variance estimates shown in 

Table 3, providing some insight about how adding raters, day or segments will affect the 

noise of the classroom mean measure under our identifying assumptions. This in turn 

makes it possible to anticipate how the reliability of the measure would change in 

                                                 
 
8 Factor weights are 0.99 for concept development and 0.77 for quality of feedback. The outcome was 
standardized so that the sum of the error variances is unity. 
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response to varying the deployment of observational resources. The largest source of 

error variation is , the confounded segment and segment-by-rater variance. Given 

this large variation, and given our identifying assumptions, we conclude tentatively that 

adding segments will be very helpful in increasing the reliability. The next largest source 

of error variance is the rater variance. The noise associated with this variation can be 

reduced by adding raters. In contrast, day noise is relatively small so adding days will not 

boost the reliability as much. Yet the variation is non-trivial so a modest improvement in 

reliability is achievable by adding days. Moreover, adding days will also reduce the 

impact of the classroom-by-day variance. However, the benefit of adding raters will be 

greater given the comparatively large values of rater variance and rater-by-classroom 

variance relative to the day variance and the day-by-classroom variance. There are two 

caveats: a) the benefit of adding raters or days or segments must be weighed against 

costs; and b) these conclusions may hinge on the validity of our identifying assumptions. 

2*
segment

How can we examine the impact of more training for raters? Our results 

indicate that there is non-negligible variation between raters  and that the 

rater-by-classroom variance is also non-negligible . This suggests 

perhaps that increased training of raters might be a good investment. How can our data 

inform such an option?  

)29.ˆ( 2 rater

)11.ˆ( 2
raterxclass

The standard representation of reliability will not give us an answer. We therefore 

modify the expression for reliability by noting that, according to our model, the 

correlation between the ratings of two raters (rater r and rater r’) during the same 

segment is 
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Presumably, training raters would increase this correlation, and it is possible for trainers 

to monitor the increase in this correlation as training proceeds. To discern the effect of 

such an increase, we define also two other correlations: the correlation d between the 

true quality on two days (day d and day d’), and the correlation s between the true 

quality on two segments (segment s and segment s’):  
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           (7) 

We can now re-express our reliability formula (Equation 5) in terms of these correlations: 
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This form of the expression for the reliability helps us assess the impact of increasing 

inter-rater consistency, that is, r .  

 Increasing the number of raters. The number of raters can significantly affect 

reliability. We see from Table 4 that increasing Rc from 1 to 10 increases the reliability 

from .55 to .88 when 70.d and Dc = 7. However, the impact of increasing the number 

of raters greatly diminishes when the inter-rater correlation d  is very high. For example, 

increasing the number of raters from 1 to 10 increases the reliability only from .80 to .93 

when 90.d and .  7cD
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--- Insert Table 4 Here --- 

Increasing the number of days. Increasing the number of days of observation 

per classroom has a comparatively modest impact on reliability. For example, increasing 

the number of days from 4 to 10 increases reliability from .82 to .87 when and 4cR

80.d  under our identifying assumptions.  

 Increasing inter-rater correlation. Improved training can presumably improve 

inter-rater correlation and hence boost reliability. Table 4 shows that this effect is large 

when the number of raters per classroom is small. However, the impact of increasing 

inter-rater correlation diminishes as the number of raters per classroom increases. Thus 

we see that when we increase the inter-rater correlation from .60 to .90, the reliability 

increases dramatically, from .45 to .85 when 1cR  (given 7cD ). However, when 

, the same increase in inter-rater correlation boosts the reliability modestly, from 

.85 to .93 (again given ). 

10cR

7cD

 In summary, there is a clear trade-off between increasing the number of raters per 

classroom and improving training to boost the inter-rater correlation. Hiring more raters 

may be a simpler and surer way of increasing reliability. But if improving the rater 

training is comparatively inexpensive, researchers may consider increasing the intensity 

of rater training as an option.  

 In Table 4, entries where reliability exceeds .80 are in bold, highlighting there are 

a number of options for achieving high reliability. Each entry represents a combination of 

the number of days, the number of raters, and the amount of training each rater receives 

as reflected in the inter-rater correlation. Associated with each option, in principle, is an 
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overall cost. In principle, such a table can be used to select the most cost effective 

strategy for achieving a given level of reliability.  

Step 5: Sensitivity analysis 

All of the results under Step 4 were contingent on the validity of our identifying 

assumptions. To assess the sensitivity of our results to departures from these assumptions, 

we consider eight alternative scenarios. The scenarios arise from varying the assumptions 

1) about the confounding of the segment variation with the segment-by-rater variation 

and 2) about the confounding of the classroom-by-day variation with the rater-by-day 

variation and the classroom-by-rater-by-day variation shown in Table 2. A summary of 

the scenarios considered in our sensitivity analysis is in Table 5. For the confounding of 

segment variation with the segment-by-rater variation ( ), in 

scenarios 1 through 4 we assume , thus , while in scenarios 5 

through 8 we assume = = . On the confounding of the 

classroom-by-day, the rater-by-day and the classroom-by-rater-by-day variances 

( ), in scenarios 1 and 5, we assume 

, thus ; in scenarios 2 and 6, we assume 

, thus ; in scenarios 3 and 7, we assume 

 and ; finally, in scenarios 4 and 8, we 

assume .  

222*
segmentxratersegmentsegment  
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22
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02 xdayxxraterxclass
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day

--- Insert Table 5 Here --- 
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 Next we estimate the reliability under varying sample sizes for each of these 

scenarios.9 The results are in Table 6. As shown, if Rc and Dc are the same, the 

differences in reliability are small. That is, results are insensitive to varying Scd only. 

What is more, results are generally insensitive to assumptions about the variance 

components as longs as Rc and Dc are not too different. When Rc is much bigger than Dc, 

or vice versa (e.g., in a 4 to 1 or 7 to 1 ratio), the reliability starts to vary modestly 

between scenarios. Even then, the differences would have little impact on the power 

analysis, the subject to which we now turn. The sensitivity analysis allows us to estimate 

power under the range of reliabilities generated by alternative identifying assumptions. 

--- Insert Table 6 Here --- 

Step 6: Reliability, sample size, and power to detect treatment effects 

We now investigate the implications of our G-study for the design of a primary 

study when the outcome measure is group quality. To illustrate, we consider the case in 

which the primary study will have a “multi-site” experimental design. The sites will be 

schools; within schools, classrooms will be randomly assigned to treatments.  

Multi-site cluster-randomized trial with group-level outcomes. Suppose a new 

teacher training program aims to improve the quality of the student-teacher interactions in 

classrooms. Assume eligible teachers are assigned at random to treatment and control 

conditions within each school participating in the study.  

Program evaluation model. Let  denote the true latent quality score for 

classroom  in school 

ckt

,..., K},...,1{ Cc }1{k  and assume for simplicity that all schools 

                                                 
 
9 Note the expressions for the variance and the reliability (Equations 4 and 5) need to be revised whenever 
the identifying assumptions change.  
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in the study have the same number of classrooms. Under a fully balanced design with C/2 

classrooms assigned to the treatment condition and C/2 to the control condition at each 

school, the model for evaluating the program effects might then be 

   ckckkkck uWrrt  1100         (9) 

where 0  is the overall mean; 1  is the average treatment effect;  is a contrast 

indicator (½ for treatment classrooms and -½ for control classrooms);  are 

classroom-specific random effects; 

ckW

),0(~ 2
cck Nu 

 000 0 ,N~r k  are random effects associated with the 

school means; and 1 ,0~ 11Nr k

11

 are random effects associated with the school-specific 

treatment effects. Thus  quantifies the heterogeneity in treatment impact across sites. 

Here,  is the between-classroom variance.2
c 10  

Let cky  be the mean observed outcome for classroom },...,1{ Cc  in school 

. That is, },...,1{ Kk cky  is a measure of , and the notation of ckt cky  reflects that it is a 

classroom-level measure obtained by multiple raters on multiple days and segments, as in 

the previous section. Thus, if cke  denotes the measurement error in cky  as a measure of 

, we have ckt ckckck ety   , where the measurement errors jke  are independently 

distributed with a mean of 0 and variance of . The reliability of 2
e jky  is therefore 

 2
e22 / cc   .  

Paralleling Raudenbush & Liu (2000), the variance of the treatment effect is  

                                                 
 
10 Notice the model assumes random site effects. In other cases, sites may be regarded as fixed and study 
results would be limited to the study sample. If the number of sites is small, a fixed-effects model is often 
more appropriate since it is difficult to generalize to a large population from a small number of sites.   



  26 
 

   
K

C
Var

/4
ˆ

2
e

2
c11

1





       (10) 

and the power of a test of 0: 010 H  against 0: 011 H  is determined by the non-
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Standardization. Define the standardized effect size c /1  and the variance of 

the site-specific standardized effect sizes . Dividing the numerator and 

denominator of (11) by  yields a useful and mathematically equivalent re-expression: 
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The non-centrality parameter shown in Equation (12) determines the power to detect a 

treatment effect. It is clear that increasing the number of schools or classrooms, or the 

reliability of the outcome measure, all result in increased power. Interestingly, Equation 

(12) shows that lack of reliability in essence reduces the effective C, that is, the number 

of classrooms sampled per school. If 1 , the second term in the denominator is 4/C. 

However, suppose 5. , then the second term in the denominator would be 4/(.5*C). 

Power in this case would be the same as reducing the number of classes per school by 

half, given 1 .   

Reliability and power. To study the extent to which the reliability of measurement 

of classroom quality affects the power in a multi-site group-randomized trial, consider a 

study with C = 6 classrooms in each of J = 15 schools. At each school, 3 classrooms are 

assigned to the treatment condition and 3 to the control condition. Let .15 of the total true 
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standardized outcome variation lie between schools and set at .05 the level for 

determining statistical significance. How much power will the study have to detect an 

effect size of .75, assuming the effect size variability is .05? 11  

Under the assumption that the outcome measure is fully reliable, the power to 

detect effect sizes .75 and larger is about .93. The study would then be “adequately 

powered” given common conventions for acceptable power. Power, however, rapidly 

decreases as the reliability of the outcome measure decreases. This relationship is shown 

in Figure 1. Notice how low reliabilities can hurt the power of the study. For example, a 

study using an outcome with reliability of 0.25 will have a statistical power of only about 

0.39 and would now be regarded as badly underpowered. 12  

--- Insert Figure 1 Here --- 

 

IV. Summary and Conclusions 

 Measuring group-level quality allows researchers to study the impact of an 

intervention on processes believed essential to the improvement of youth outcomes. 

These processes might include the instructional quality of classrooms, the social 

                                                 
 
11 Although an effect size of 0.75 may seem exceedingly large, recall that the standardization for group-
level outcomes is achieved by dividing the observed difference in mean outcomes for the treatment and 
control groups by the true between-classroom variation only, not by the total observed variation. This will 
tend to increase the magnitudes of the observed effect sizes. In addition, group-level outcomes tend to have 
smaller standard deviations than do individual-level outcomes, which also increase their observed effect 
sizes. Furthermore, interventions targeted to promote group quality will most likely have proportionally 
larger direct effects on the group processes than they will on individual outcomes. For all these reasons, the 
magnitudes of effect sizes for group-level outcomes that are estimated as described above may be much 
larger those typically observed for individual outcomes. However, much remains to be learned about how 
large effect sizes for interventions designed to improve group quality. 
 
12 The “Optimal Design for Longitudinal and Multilevel Research” software can be used for performing 
power analyses of impact studies taking into account the reliability of the outcome measure. This software 
includes options for power analysis of cluster-randomized trials and blocked (or multi-site) cluster-
randomized trials. The software and its documentation are freely available from the website of the William 
T. Grant Foundation (http://www.wtgrantfoundation.org/).  

http://www.wtgrantfoundation.org/
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environment of after-school programs, or the degree of teamwork on athletic teams. Most 

group-level outcomes of interest are, however, not directly observable. Rather, they are 

“latent” quantities and as such, will typically be measured by multiple observations or 

interviews. Measurement error will typically be an important concern.  

Measurement error can drastically reduce the power of a seemingly well-powered 

study. Small measurement errors allow increased power to detect non-zero program 

effects on group quality. In studies using direct observation, measurement error can be 

reduced by increasing the number of raters per group, the number of observation days per 

group, the number of observation segments per day, or the number of raters in a given 

day or segment. How raters are assigned may matter as well. It will typically be quite 

useful to assign raters in such a way that over time, each group is observed by more than 

one rater. Good rater selection and training will also play a key role in increasing 

reliability and boosting power, as illustrated in our example. 

 When planning the primary study – that is, the study of the impact of the 

intervention on group quality—each of these improvements in reliability will generally 

cost money. Training raters, observing for more days or more segments per day, 

assigning multiple observers to each group, for instance, generally increase the cost of 

data collection given a fixed sample size. The money so invested could, in principle, have 

been invested in boosting the sample size—e.g., the number of classrooms per school or 

the number of schools. Ideally, one would know the likely impact of each investment on 

power and, based on this knowledge, optimally allocate the resources available for 

research. 
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 A G-study is useful to inform such planning decisions. The first step is to define 

the plausible sources of measurement error and then to write down a statistical model that 

represents how those sources combine to generate errors of measurement. In Step 2, we 

design the reliability study in a way that hopefully will distinguish and quantify the most 

important sources of measurement error. We do this knowing that no matter how 

sophisticated the design of the reliability study, some theoretically plausible components 

of error are likely to be confounded. Assumptions must then be made about which 

sources of variation are large and which are negligible, and that is the focus of Step 3. 

Step 4 reaches tentative conclusions the validity of which depend on the identifying 

assumptions. These assumptions cannot be checked. However, using Step 5, the analyst 

can conduct a sensitivity analysis to determine whether key conclusions about the design 

of the primary study would change substantially under alternative assumptions. 

 Two issues emerge in planning the D-study, Step 6. The first involves possible 

sources of bias. If classrooms, for example, are nested within raters in the primary study, 

bias can easily creep in. This bias can be reduced by insuring that each rater observes an 

equal number of treatment and control classrooms. Ideally, classrooms within treatment 

conditions would also be randomly assigned to the raters if a nested design is selected for 

the primary study. 

 The second issue in designing the decision study, of course, is to maximize 

power. Equivalently, given a fixed power, one minimizes the minimum detectable 

treatment effect—the smallest treatment effect that can be discovered with adequate 

power. For any possible design decision (e.g., more raters per classroom, more days per 

classroom, more training of raters), one can use the results of the G-study to discern the 
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expected impact on measurement reliability. Next, one can study how those 

improvements in reliability are likely to affect the precision and power of the D-study. 

One might then assess the likely cost of each strategy for increasing reliability and hence 

power. These investments could then be weighed against the key alternative way to 

improve power: boosting the sample size. In principle, there is an optimal design that will 

maximize power with available resources by wisely allocating resources between 

improvements in measurement reliability and increases in sample size. 

 A limitation of this study is that we have not developed several possible 

alternative modeling strategies. For example, we might conceptualize “days” as having 

sequence effects: perhaps teachers and students become acclimated to the presence of the 

observer, and one may discover a systematic association between the sequence number of 

the observation and classroom quality. This would encourage us to specify fixed effects 

of days or of a polynomial function of days. However, the interaction between such a 

fixed effect and raters or classrooms would nonetheless be regarded as random. Similarly, 

segment variation may be explained by fixed effects of time of day. It may be that quality 

is greater in the morning than in the afternoon, for example. Again, the interaction 

between time of day and raters or time of day and classrooms would be regarded as 

random. Although we avoid exploring these possibilities in the current article, it may be 

wise in practice to explore a full range of alternative plausible models. 
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Table 1: Sources of variability and corresponding random effects in the theoretical model 
plus research design requirements to estimate the variance component. 

Source Random effect 
Design requirements for the 
variance component to be 

estimable 
Classrooms  
(measurement unit) 

 2,0~ classc N   Multiple classrooms with more 
than one observation for some 
of them  

Raters  2,0~ raterr N   Multiple raters with more than 
one observation for some of 
them  

Days  2,0~ dayd N   Multiple days with more than 
one observation for some of 
them 

Segments  2
)( ~ segmentcds N   Multiple segments per day per 

rater (this is the residual term). 

Classroom-by-rater 
interaction  

 2~)( raterxclasscr N   Some classrooms are observed 
by multiple raters who observe 
more than one of those 
classrooms.  

Classroom-by-day 
interaction  

 2~)( dayxclasscd N   Some classrooms are observed 
on multiple days during which 
more than one of those 
classrooms is observed. 

Rater-by-day 
interaction  

 2~)( dayxraterrd N   Some raters make observations 
on multiple day during which 
multiple observations are 
made. 

Rater-by-segment 
interaction  

 2
)( ~)( segmentxratercdrs N   Multiple raters per segment 

across classroom-day 
combinations. 

Classroom-by-rater-
by-day interaction  

 2~)( dayxraterxclassroomcrd N  For some raters, classrooms 
and days are at least partially 
crossed.  
& 
For some days, classrooms and 
raters are at least partially 
crossed.   
& 
For some classrooms, raters 
and days are at least partially 
crossed. 
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Table 2: Random effects in the observational model and equivalence between estimators 
of the variance components in the observational model with those in the theoretical 
model for the empirical case study.1 

Random effects in the 
observational model 

Equivalence between variance components in the 
observational model with those in the theoretical model 

 2** ,0~ classc N   22*
classclass    

 2** ,0~ raterr N   22*
raterrater    

 2** ,0~ dayd N   22*
dayday    

 2**
)( ,0~ segmentcrds N   222*

segmentxratersegmentsegment    

   2** ,0~ raterxclasscr N   22*
raterxclassraterxclass    

   2** ,0~ dayxclassrd N   2222*
dayxraterxclassdayxraterdayxclassdayxclass    

1 All and only random effects and variance components from the observational model are 
denoted with a *. 
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Table 3: Variance estimates for the instructional climate composite.  

Variance 1,2 
 

2*
class  2*

rater  2*
day  2*

raterxclass  2*
dayxclass  2*

segment  

Instructional Climate Composite .11 .29 .08 .11 .13 .39 
1 Restricted maximum likelihood estimates. 
2 Standardized estimates of the error variances (not including ) may not add up to 1 due to 

rounding.  

2*
class
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Table 4: Reliability under varying Rc, Dc and r .1 
Dc Rc r  

1 4 7 10 
1 .6 .39 .44 .45 .45 
 .7 .46 .54 .55 .55 
 .8 .54 .65 .67 .67 
 .9 .62 .77 .80 .81 
4 .6 .59 .72 .74 .75 
 .7 .63 .77 .80 .81 
 .8 .66 .82 .86 .87 
 .9 .69 .87 .90 .92 
7 .6 .63 .79 .81 .83 
 .7 .66 .83 .86 .87 
 .8 .68 .86 .89 .91 
 .9 .70 .88 .92 .94 

10 .6 .66 .82 .85 .86 
 .7 .67 .85 .88 .90 
 .8 .69 .87 .91 .92 
 .9 .70 .89 .93 .94 

1 Here d  = s = .75 and Sdc = 6. 
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Table 5: Sensitivity analysis: Estimated Variance Components Under Alternative 
Identifying Assumptions 
 

Scenario 2, 3 
Source 1 

1 2 3 4 5 6 7 8 
2
class  .11 .11 .11 .11 .11 .11 .11 .11 
2
rater  .29 .29 .29 .29 .29 .29 .29 .29 
2
day  .07 .07 .07 .07 .07 .07 .07 .07 

2
raterxclass  .12 .12 .12 .12 .12 .12 .12 .12 

2
dayxclass  .14 0 .07 .05 .14 0 .07 .05 

2
raterxclass  0 .14 .07 .05 0 .14 .07 .05 

2
dayxraterxclass  0 0 0 .05 0 0 0 .05 

2
segment  .38 .38 .38 .38 .19 .19 .19 .19 

2
segmentxrater  0 0 0 0 .19 .19 .19 .19 

1 Source of variance from the theoretical model. 
2 Assumptions about the estimates obtained from the observational model. 
3 Any differences in total variation are due to rounding.  
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Table 6: Reliability under different scenarios for varying Rc, Dc and Scd.
1 

Scenario 
Rc Dc Scd 1 2 3 4 5 6 7 8 
1 1 2 .12 .12 .12 .12 .12 .12 .12 .12 
1 1 4 .13 .13 .13 .13 .13 .13 .13 .13 
1 1 6 .14 .14 .14 .14 .14 .14 .14 .14 
1 1 8 .14 .14 .14 .14 .14 .14 .14 .14 
1 4 2 .18 .15 .16 .16 .16 .14 .15 .14 
1 4 4 .18 .16 .17 .16 .17 .15 .16 .16 
1 4 6 .19 .16 .17 .17 .18 .15 .17 .16 
1 4 8 .19 .16 .17 .17 .18 .16 .17 .16 
1 7 2 .19 .16 .17 .17 .17 .14 .15 .15 
1 7 4 .20 .16 .18 .17 .18 .15 .17 .16 
1 7 6 .20 .16 .18 .17 .19 .16 .17 .16 
1 7 8 .20 .16 .18 .17 .19 .16 .17 .17 
4 1 2 .18 .22 .20 .20 .20 .25 .23 .23 
4 1 4 .21 .27 .24 .24 .23 .29 .26 .26 
4 1 6 .23 .29 .25 .26 .24 .31 .27 .28 
4 1 8 .23 .30 .26 .27 .24 .32 .28 .28 
4 4 2 .35 .35 .35 .35 .35 .35 .35 .35 
4 4 4 .38 .38 .38 .38 .38 .38 .38 .38 
4 4 6 .39 .39 .39 .39 .39 .39 .39 .39 
4 4 8 .40 .40 .40 .39 .40 .40 .40 .39 
4 7 2 .41 .39 .40 .39 .39 .37 .38 .38 
4 7 4 .43 .41 .42 .41 .42 .40 .41 .40 
4 7 6 .44 .41 .42 .42 .43 .41 .42 .41 
4 7 8 .44 .42 .43 .42 .44 .41 .42 .42 
7 1 2 .19 .25 .22 .22 .23 .30 .26 .27 
7 1 4 .23 .31 .27 .28 .25 .35 .30 .31 
7 1 6 .25 .34 .29 .30 .27 .37 .31 .32 
7 1 8 .26 .36 .30 .31 .27 .39 .32 .33 
7 4 2 .41 .43 .42 .42 .43 .45 .44 .44 
7 4 4 .45 .48 .46 .46 .46 .49 .47 .48 
7 4 6 .46 .50 .48 .48 .47 .50 .49 .49 
7 4 8 .47 .50 .49 .49 .48 .51 .49 .50 
7 7 2 .49 .49 .49 .48 .49 .49 .49 .48 
7 7 4 .52 .52 .52 .52 .52 .52 .52 .52 
7 7 6 .53 .53 .53 .53 .53 .53 .53 .53 
7 7 8 .54 .54 .54 .53 .54 .54 .54 .53 

1 Dcr = 1 throughout. 
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Figure 1: Reliability vs. power for a multi-site cluster-randomized trial with group-level 
outcomes. 
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Appendix: Notes on data cross-tabulations 
 
To assess how many of the terms in the theoretical model can be estimated from the data 
at hand, we applied the principles listed in Table 3 to our illustrative example. The results 
were as follows.  
 
On the classroom-by-rater cross-tabulation: 
 Of the 240x26=6240 cells, 5829 have no observations and the remaining 411 cells 

have at least 4 observations (non-empty cells: 6.59%).  
 82 classrooms were observed only by 1 rater; 147 classrooms were observed by 2 

raters; 10 classrooms were observed by 3 raters; and 1 classroom was observed by 5 
raters (no classroom was observed by two or more raters simultaneously).  

 All raters assessed multiple classrooms (max: 22 classrooms per rater; min: 3; 
average: 15.8; harmonic mean: 13.1).  

 Some classrooms, however, are nested within raters who rate only the classrooms that 
are nested within them (19 classrooms are nested in one rater who only rated those 19 
classrooms).  

 
On the classroom-by-day cross-tabulation: 
 Of the 240*167=40,080 cells, 39,013 have no observations and the remaining 1067 

cells have at least 2 observations (non-empty cells: 2.66%). 
 There were 2 or more classrooms assessed in 158 of the 167 days and only 1 

classroom assessed in the remaining 9 days. The classrooms assessed in those 9 days 
were also assessed in other days.  

 All classrooms are assessed on multiple days (max: 8 days per classroom; min: 2; 
average: 4.4; harmonic mean: 4.2).  

 
On the day-by-rater cross-tabulation: 
 Of the 167*26=4,342 cells, 3287 have no observations and the remaining 1055 cells 

have at least 2 observations (non-empty cells: 24.30%). 
 Only in 9 days was only 1 rater employed, and the raters employed in those 9 days 

assessed in other days that were not nested. There were multiple raters employed in 
the remaining 158 days.  

 All raters assess on multiple days (max: 88 days per rater; min: 3; average: 40.6; 
harmonic mean: 24.3).  

 
On the three-way cross-tabulation of classrooms, raters and days: 
 Of the 240*167*26=1042080 cells, 1041013 have no observations and the remaining 

1067 cells have at least 2 observations. Notice these 1067 cells necessarily have to be 
the same non-blank cells in the classroom-by-day cross-tabulation.  

 Of the 1067 non-blank cells, 1043 are unique rater-by-day combinations and only 12 
rater-by-day combinations have 2 classrooms, meaning that only on 12 occasions did 
a rater visit two classrooms on the same day. Those 12 occasions are nested within 7 
raters.  

 All classrooms are assessed on multiple rater-by-day combinations (max: 8 rater-by-
day combinations per classroom; min: 2; average: 4.4; harmonic mean: 4.2). 
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 On the classroom-day-by-rater (cd.r) cross-tabulation:  
o There is one rater for each classroom-day combination.  
o All raters assess on multiple classroom-day combinations (41.04 on average). 

 On the classroom-rater-by-day (cr.d) cross-tabulation:  
o There are at least 2 days in 360 of the 411 classroom-rater combinations.  
o There are at least 2 classroom-rater combinations in 158 of the 167 days.  

 On the rater-day-by-classroom (rd.c) cross-tabulation:  
o There is only 1 classroom in 1,043 of the 1,057 rater-day combinations. The 

remaining 12 have 2 classrooms.  
o There are at least 2 rater-day combinations for all classrooms.  
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