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Abstract

This paper provides practical guidance for researchers who are designing and analyzing
studies that randomize schools — which comprise three levels of clustering (students in
classrooms in schools) — to measure intervention effects on student academic outcomes when
information on the middle level (classrooms) is missing. This situation arises frequently in
practice because many available data sets identify the schools that students attend but not the
classrooms in which they are taught. Do studies conducted under these circumstances yield
results that are substantially different from what they would have been if this information had
been available? The paper first considers this problem in the context of planning a school-
randomized study based on preexisting two-level information about how academic outcomes
for students vary across schools and across students within schools (but not across classrooms in
schools). The paper next considers this issue in the context of estimating intervention effects
from school-randomized studies. Findings are based on empirical analyses of four multisite data
sets using academic outcomes for students within classrooms within schools. The results
indicate that in almost all situations one will obtain nearly identical results whether or not the
classroom or middle level is omitted when designing or analyzing studies.
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Introduction

What are the implications of planning and analyzing a study that randomizes groups comprised of
three levels of variation without explicitly accounting for the middle level? For example, what if one
randomized schools but planned the study and analyzed the resulting data without explicitly accounting

for the clustering of students within classrooms?

This problem often occurs at the planning stage of studies that randomize schools because little is
known about the three-level variance structure of outcome measures for students clustered in classrooms
in schools. Most of the published empirical basis for planning such studies instead comprises information
for the two-level variance structure of students clustered in schools (see, for example, Bloom, Richburg-
Hayes, and Black, 2007; Hedges and Hedberg, 2007). Thus, research designs based on this information

do not account explicitly for the clustering of students in classrooms.

The problem also occurs at the analysis stage of studies that randomize schools because research-
ers often use administrative records to measure student outcomes. Because these records typically do not
identify which students are in which classrooms — and adding such identifiers is difficult or costly, if not
impossible to do — the resulting studies are analyzed using two-level models that do not account explicit-

ly for the clustering of students within classrooms.

Previous researchers have considered the implications of ignoring a level of variance when an-
alyzing data with a multilevel structure. Specifically, they have shown that if a middle level of a multi-
level variance structure is ignored, part of it will shift up one level and the rest will shift down one level,
thereby increasing estimates of the variances at these adjacent levels. In this way, the middle-level
variance is to some extent accounted for implicitly (Opdenakker and Van Damme, 2000; Moerbeek,

2004; Tranmer and Steele, 2001; Van den Noortgate, Opdenakker, and Onghena, 2005).

Researchers also have tested (using simulated and actual data) the implications that such omis-
sions can have for the interpretation of multiple regression analyses. They have demonstrated, for exam-
ple, that in many situations ignoring a level of variance will result in standard errors that are misspecified
and thereby produce incorrect statistical inferences. For example, omitting the classroom level in a sample
that has students clustered in classrooms within schools will produce incorrect estimates of standard
errors for student-level independent variables (Opdenakker and Van Damme, 2000; Moerbeek, 2004;
Van den Noortgate, Opdenakker, and Onghena, 2005).



These studies provide a general overview of what happens to both the standard errors and point
estimates of predictors included at all levels of a hierarchical model when various levels are ignored.
However, as Van Landeghem, De Fraine, and Van Damme (2005) note, the findings from these studies
often do not apply to situations that researchers commonly face in practice. For example, many of the
results are based on the assumption that the size and internal structure of every randomized cluster is the
same and that no covariates are included in the analysis. This is rarely the case in practice. Similarly, these
results are usually quite general and depend on factors like the particular level of a multilevel variance
structure that is ignored, the level of the predictor variable of interest, and the relative magnitudes of the
variance components involved. The overarching conclusion of these papers is that omitting a level from a
multilevel analysis can be problematic, but it is difficult to determine the practical implications of doing
so for any given potential research application. Furthermore, these studies focus primarily on the implica-
tions of this approach for analyzing data when a level of variance is not explicitly acknowledged and little
attention is paid to the implications of missing a level of variance for the minimum detectable effects
obtained during power analyses for planning studies. Consequently, there is little practical guidance for
researchers who are interested in the design and analysis of school-randomized studies when information

about the classroom is not available.

This paper fills that gap by exploring the consequences of ignoring classroom-level information
when designing or analyzing a school-randomized trial. It extends previous findings by investigating not
only the implications of not acknowledging the middle level for analyzing data, but also by investigating
its implications for planning studies with a three-level data structure using only the top and bottom levels
of information. The paper also provides concrete guidance to education researchers who are designing
and analyzing data from school-level random assignment studies in which the cluster size and structure
varies and covariates are used for analysis. Finally, the paper extends the findings to cases in which the
sample used to plan an impact study has a different cluster structure (that is, a different number of
students per classroom and classrooms per school) than the structure of the sample for the impact study
itself. These extensions are based on empirical analyses of four multisite data sets that use academic

outcomes for students within classrooms within schools.

The resulting findings indicate that no substantial problem is likely to arise from using two-level
models (for students within schools) to design or analyze studies that randomize schools. This conclusion
holds for both elementary school data (where the middle-level variance component tends to be small) and
secondary school data (where the middle-level variance component tends to be large), for data sets with

varying numbers of students per classroom and classrooms per school, in situations where covariates are
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included at either the student or school level, and in situations where the cluster structure of the study

being planned differs substantially from the one used for planning purposes.

The rest of the paper is structured as follows. It begins by presenting a theoretical framework for
comparing three- and two- level models of a three-level situation. The paper then presents estimates of
three-level and two-level variance components and examines how an ignored classroom-level variance
component is shifted up to the school level and down to the student level. The authors compare the
shifting in their data with what is predicted theoretically and find the actual and predicted shifts to be
consistent with each other. These findings are then used to consider the implications of a two-level
analysis of minimum detectable effect sizes (MDES) for a study that randomizes schools. These implica-
tions are explored for models that do and do not use covariates to estimate MDES. The paper also
explores the implications of planning a study that has a different underlying data structure than the one
used for planning purposes. The paper next explores the implications of ignoring the middle level when
analyzing data with a three-level structure using a two-level model, and it ends by offering some conclu-

sions and recommendations.

Theoretical Framework

Consider the following two alternative research designs for estimating the impacts of an educa-
tional intervention on student outcomes from a study that randomizes schools in a large urban district.
Both designs will estimate impacts by the observed differences in mean student outcomes for the ran-
domized treatment group and control group, and the true variance structure for the study’s sample will

comprise three levels: students, classrooms, and schools.

Design A uses a statistical model that specifies all three levels of the true variance structure. The
school-level variance equals T4, which is the variance of mean outcomes across schools within the
district. The classroom-level variance equals y2 , which is the variance of classroom means within
schools. The student-level variance equals ¢, which is the variance of student scores within class-

rooms. The total student variance equals the sum of these three variance components (5 + y3 + 02).

Design B uses a two-level statistical model that specifies two variance components, one for mean
values of the outcome measure across schools, 73, another for individual student outcomes within
schools, a3. These two variances sum to the total student variance, which is the same as that for the three-

level model but is decomposed differently. Because the clustering of students within classrooms is



ignored, student outcomes are assumed to vary independently of each other within schools, which is an

oversimplification.

The following expressions can be used to compute a minimum detectable effect size for student
outcomes given designs A and B, without covariates or blocking. Note that throughout this paper,
minimum detectable effect sizes are defined for a two-tail hypothesis test at the 0.05 level of statistical

significance with 80 percent statistical power (for a discussion of how this is done, see Bloom, 2005).

Design A
M >y ’ |
MDES, = 2/ ~% Q+7A+ O « (D)
JPA-P)\V J JK JKN. \/TA2+7A2+0A2
where

MDES, = the minimum detectable effect size for design A;

M), = a multiplier for J-2 degrees of freedom that equals approximately 2.8 for

studies that randomize 20 or more schools;
P = the proportion of schools randomized to treatment;
J = the total number of schools randomized to treatment or control status;
K = the harmonic mean number of classrooms per school,;

Na= the harmonic mean number of students per classroom.

Design B

2 2
M- Ts, O« 1

JPA-P)\V J  JNs \/TBZJFGBZ

Where, in addition:

MDES 5 =

2

Np = the harmonic mean number of students per school.
These two expressions are the same with respect to the multiplier (M;.,), which converts standard
errors of estimates to minimum detectable effects (see Bloom, 2005, for a discussion). The two expres-

sions are also the same with respect to the proportional allocation of randomized groups to treatment



status (P) and control status (1-P). However, they differ with respect to the square root of the sum of

variance contributions from the different levels of each statistical model.

The central question to address when comparing these two expressions is: How do their estimated
values compare when the total student variance is decomposed into all three components (for schools,
classrooms, and students — as in Equation 1 — to when the total student variance is decomposed only

into components for schools and for students within schools (as in Equation 2)?

To understand this question, first recall that both models start with the same total variance in the
outcome measure across all students from all classrooms in all schools. Hence, the sum of the three
variances under model A equals the sum of the two variances under model B or:

2.2 2_ 2.2 3
T4 Yt o4~ TR OB (3)
Variance estimates for model B must thus shift the true middle-level variance to the bottom level,

the top level, or both levels.

Moerbeek (2004, Equation 14) derives the following expressions that represent this shifting when

there is a constant number of classrooms per school (K) and students per classroom (V).

(4)

N K- 5)

2) =
E(z3) the expected value of £ B and

A

2
2) =
E(qs B) the expected value of OB,

Equations 4 and 5 indicate that a predictable portion of the true classroom-level variance is
shifted to the estimated school-level variance, and the remainder is shifted to the estimated student-level

variance. The sum of these two increments equals the total classroom variance.



Intuitively, it is easy to see how part of the true classroom-level variance shifts down to the esti-
mated student-level variance. This occurs because part of the observed variance in outcomes across
students within schools reflects classroom differences. Thus, when the variation across students within

schools is measured and when cross-classroom differences are ignored, a part of these differences is

A

included in the measure of student-level variance within schools, o L Consequently, the estimated

A

student-level variance within schools for the two-level model o 2 exceeds that for the estimated student-

A

level variance within classroom in the corresponding three-level model, - 2.

It is less readily apparent how the two-level estimation model B attributes some of the cross-
classroom variance to the estimated variance across schools. This occurs because model B assumes that
outcomes vary independently across students within schools, when in fact they are clustered by class-
room. By ignoring the clustering of students within classrooms, the two-level model B understates the
contribution of student-level variation to the total observed variance of school sample means. Equation 4
indicates that more of the classroom-level variance is shifted to the estimated school-level variance as
students per school (NsK) are clustered into fewer classrooms (K). This shift reflects how the clustering
of students within classrooms inflates the true variability of within-school outcomes. Ignoring this
clustering thus causes larger understatement of the within-school variability of outcomes when there are
fewer classroom clusters, which, in turn, causes one to overstate the between-school variance accordingly.
In other words, when decomposing the total observed variance in school sample means into variation due
to true variation across schools and variation due to estimation error produced by within-school student
variation, the two-level model overestimates the true school-level variance. Consequently, the estimated

school-level variance for the two-level model exceeds that for the three-level model.

Because the classroom variance that is ignored by a two-level model is reflected in estimates of
school and student variances, the classroom variance is not missing from a two-level analysis. Indeed, as
has been shown by others (Moerbeek, 2004; Van den Noortgate, Opdenakker, and Onghena, 2005)
theoretically, using a two-level model to estimate the cross-level variance components to be used in the
calculation of the minimum detectable effect for a group-randomized research design will produce the
same results as those produced by a three-level model. As noted, however, these theoretical conclusions
assume that every school has the same number of classrooms per school and students per classroom, that
data used for planning a study reflect the number of classrooms per school and students per classroom

that will be included in the actual study sample, and that no covariates will be used for the study’s



analysis. To extend these theoretical findings to situations that occur in practice, the remainder of this
paper explores empirically what happens when the middle level of a three-level model is excluded from

analyses, using three-level student outcome data from four major sources.

The Data

Data from four different sources are used for the following analysis. They are the School Break-
fast Pilot Project (Abt Associates Inc. and Promar International, 2005), the federal Reading First Impact
Study (Gamse, Bloom, Kemple, and Jacob, 2008) and statewide administrative-records data on stan-
dardized test scores for individual students in multiple subjects from Florida and from North Carolina.
Tables 1 and 2 describe the size, structure, and variability of the analysis samples for each data source. As
can be seen, these analysis samples provide an unusually large, diverse, and comprehensive empirical

basis of analysis.

Table 1 reports the numbers of districts represented by these data plus the harmonic mean num-
bers of schools per district, classrooms per school, and students per classroom in the analysis sample. Of
particular importance is the fact that the internal cluster structure of schools in the sample (that is, their
number of classrooms and students per classroom) varies widely across the four data sources. Because, as
demonstrated by Equations 4 and 5, this internal cluster determines how the classroom-level variance is
shifted upward (to the school level) and downward (to the student level) when the middle level is ignored,

it is important to represent a wide range of cluster structures in the analysis.

Table 2 describes the variability within the sample from each data source in its number of schools
per district, number of classrooms per school, and number of students per classroom. This variability is
measured by the standard deviation of each parameter. Of particular importance is the substantial variabil-
ity that exists in the internal cluster structure of schools (their numbers of classrooms and students per
classroom). This variability is what enables this paper to extend past theoretical work in ways that provide
practical guidance for designing and analyzing educational evaluations (recall that existing theoretical

findings assume no such variability).

The School Breakfast Pilot Project (SBPP) was a three-year demonstration (2000-03) that used a
matched-pair random-assignment design to randomly assign schools within six districts to a treatment

condition in which schools implemented a universal free school-breakfast program or to a control
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condition in which schools continued to operate their regular subsidized breakfast programs for eligible
students from low-income families. The goal of the project was to measure the added value of universal
free school breakfasts. The two outcome measures used from the SBPP for the analysis presented in this
paper are the Stanford 9 Total Math Scale Score (math achievement test scores in scaled-score points) and

the Stanford 9 Total Reading Scale Score (reading achievement test scores in scaled-score points).

The present SBPP analysis sample contains 1,151 third-graders from 233 classrooms in 111
schools from six districts. On average, there are approximately 3.7 students per classroom and two
classrooms per school. The number of schools per district varies from around six to eight depending on
the outcome measure (see Table 1). The cluster structure of the SBPP sample is relatively constant by
design because the original study sampled a fixed number of classrooms per school and students per

classrooms. Hence, this sample has the smallest standard deviations for these parameters (see Table 2).

The Reading First Impact Study was a three-year (2004-07), congressionally mandated evalua-
tion of the federal government’s Reading First initiative to help all children read at or above grade level
by the end of third grade (Gamse, Bloom, Kemple, and Jacob, 2008). The study used a regression
discontinuity design that capitalized on the systematic process used by some districts to allocate their
Reading First funds to schools. The study was designed to measure the effects of the program on teacher
practices and student achievement. Seventeen districts plus one state program were chosen for the study,
and its original sample included 248 schools. Data for the present analysis are limited to 15 sites (14
districts plus one state) and 225 schools for which it was possible to estimate student, classroom, and
school-variance components. Reading First outcome measures used for the present analysis are SAT 10
reading scaled scores for all first, second, and third-graders in the study’s schools during the spring of

2005.

Even though the RFIS was a regression discontinuity analysis, it was possible to use its data to
explore the implications of these data for a research design that would have randomized the schools. This
was accomplished by ignoring the rating variable used to allocate Reading First funds (which was the
basis for the study’s regression discontinuity analysis) and estimating the natural variation in academic

outcomes that exists across schools, classrooms within schools, and students within classrooms.

The RFIS sample for the analysis presented in this paper includes approximately 10 schools per
district, three classrooms per school, and nine students per classroom. Unlike the SBPP, the RFIS was not

designed to have a constant cluster size and structure. Instead, all first- through third-grade students in

10



regular education classrooms in the study’s schools were included in its original sample. Hence, there is
more variability across RFIS schools in the number of students per classroom and classrooms per school

than is the case for SBPP schools.

Statewide data on test scores for individual students from Florida were obtained from the Florida
Department of Education’s K-20 Education Data Warehouse (FL-EDW). The FL-EDW is a longitudinal
data system that includes records on all students, teachers, and schools in the state. Each year Florida
students in the third through eleventh grades take the Florida Comprehensive Assessment (FCAT-SSS) in
reading and math. The analysis presented in this paper uses data on these test scores for grade five
(representing elementary school) in math and in reading for school year 2005-06. All scores are norm-
alized by subject. Samples are limited to students with valid test scores in both the current year and the
previous year. The analytic samples are further restricted to self-contained classrooms only. On average,
this elementary school sample comprises approximately 17 students per class, four classrooms per school,

and six schools per district from a total of 43 districts.

Statewide data on test scores for individual students from North Carolina were obtained from the
North Carolina Education Research Data Center (NCERDC) for end-of-course assessments in reading
and mathematics given to students in grades three through eight in school year 2005-06. The present
analysis uses fifth-grade scores to represent scores for elementary schools. Similar to what has been done
with the Florida data, the analysis keeps students with valid test scores in both the current and the pre-
vious years and it keeps self-contained classrooms only. On average, the elementary school sample has
about 16 students per classroom, three classrooms per school, and five schools per district. A total of 86

districts are included in the elementary school sample.

Scores are also available for North Carolina secondary school students’ end-of-course assessments
in algebra II, biology, chemistry, and geometry courses in school year 2005-06. This paper uses these scores
to represent scores for secondary school. These end-of-course tests allow straightforward assignment of
students to classrooms. The disadvantage of having end-of-course tests, on the other hand, is that students
take these tests only once and therefore no repeated measures of student performance in a particular subject
are available. Thus, in order to control for pretest scores in the models that will be presented, students’ test
scores on algebra | are used to approximate their starting levels. On average, the secondary school sample
has approximately 15 to 20 students per classroom, three classrooms per school, and three schools per

district. These data represent between six and 48 districts depending on the test subject.
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Because the Florida and North Carolina data are for entire states, they reflect substantial variation
in the number of students per classroom and classrooms per school. Hence, as can be seen from the
standard deviations of the number of classrooms per school and the number of students per classroom
reported in Table 2, the data exemplify schools with varying internal cluster structures. In order to
investigate the impact of ignoring the middle level (the classroom level) in the context of estimating
intervention effects, half of the schools in Florida and North Carolina were randomly assigned to the
“treatment” group and the other half to the “control” group, such that the true “intervention effects”

should be zero.

Estimating Variance Components from Each Data Source

This section reports estimated variance components from each of the preceding data sources.
Three-level variance components for design A were estimated using a three-level hierarchical linear
model (student-class-school); two-level variance components for design B were estimated using a two-
level hierarchical linear model (student-school). To reflect the typical range of common practices in
educational evaluation research, for each design, these variance components were estimated separate-
ly for models without covariates and for models with school-level or student-level baseline test
scores as a covariate. Models for the SBPP and RFIS samples include a zero/one indicator variable to
distinguish between treatment schools and control schools. This was not necessary for the Florida and
North Carolina samples because they do not comprise a specific set of treatment and control schools.
To ensure that all analyses are based solely on variation within school districts, zero/one indicator
variables for each district are included in the model. This is equivalent to centering all variables on

the mean values for their blocks (see Wooldridge, 2002).

Estimated Variance Components

Table 3 presents estimated variance components for all the outcomes in the data sets used in this
paper. The first three columns of Table 3 report estimated variance components for the three levels
(school-class-student) of model A, and the last two columns report estimated variance components for the
two levels (school-student) of model B. Each estimated variance component is standardized and reported
as a proportion of the total student-level variance for the sample that it represents. Values for the three
variance components in model A sum to one, and values for the two variance components in model B

sum to one. Hence, the standardized variance components for schools and classrooms in these models

12



-ordwes Apmis oy} ur s)OLHSIP

[00Y9S 10] SA[qELIEA I0JEDIPUI SE [[oMm st sdnoid [01u0o puk justyear) SurysmsunsIp 9[qeLIeA JOJedIPUl UB OPN[OUT SISA[RUE [V "SOJELIBAOD JNOTIIM
QINSEAW AUIOOINO A} JO [OPOUI [OAI[-0M] € PUL [POUI [9AJ[-OSIY} B WO POUTEIQO JIOM SUOIR[OLIOD SSE[ORIIUI AU} 0] San[eA pajewnsy :STLON

*91qes s1y} ut pojuasaid

SIsA[eue oY) WOIJ PAPN]oxs aIe d[dures oy} Ul SSe[o dUO A[UO [3Im S[ooyos pue ojdwes oY) Ul Juspys duo A[Uo [3m SIsSe[)) "§007 I0F JJUd)) ele(]
[OIedsay UONEONpPH BUI[oIe)) YHON U} Pue ‘G007 10F (M H-T1) 9snoyarepy eje( uoneonpy 0g-3 s,uoneonpy jo juounieds( epLof,] oy) ‘oseqejep
120K dn-moroy 181y (SI.IY) Aprus 1oedw] 3s1,] Surpeay oy ‘oseqejep Jeak dn-mof[of 1813 (JddS) 109f01d 1011 Isepyearq [00YoS YL :SHOYNOS

7.0 6570 €6v°0 Weo S91°0 so1sAyd [00ydS ysSIH

vTL0 9LT°0 L8Y°0 96€°0 8S1°0 A1pwoan [00ydg Y31y

980 ¥S1°0 7€9°0 S6T°0 7L0°0 Ansnuay) [00y0S YSIH

1¥8°0 6S1°0 0£9°0 €670 LLOO A3ojorg [00ydS ysIH

8LL0 70 00$°0 9LE0 ¥Z1°0 T ©1Q95[V [00YoS YSIH
‘eye(q [00YOS A1BpU003S DN

01670 06070 998°0 €900 1L0°0 G opei3 10J 159 Surpeoy

788°0 8I1°0 8180 ¥60°0 880°0 G opei3 10§ 1591 YIeN
‘BjR( [00YOS AIRJUWI[H DN

168°0 601°0 S6L°0 €CIo 780°0 G opei3 10 159} Surpesy LVOA

898°0 €10 09L°0 ov1o 001°0 G 9peIs 10§ 189} I LV
BJR( [00YOS ATRJUdWd[H T4

6£6°0 190°0 888°0 €L0°0 6€0°0 € 9pei3 1593 uorsuaydIdwod Jurpear O LVS

0v6°0 0900 768°0 9900 €400 T opels 1593 uorsudtpdwod Surpear O LVS

S06°0 $60°0 €980 €900 €L0°0 | 9peIs 159} uorsusyaIdwod Surpedr 01 LV'S
SIY

9060 £60°0 $98°0 0L0°0 £90°0 21008 Pa[eds SUIPesy [B10], 6 PIOJUB)S
€060 L60°0 9880 620°0 $80°0 9100S Po[eds YIRIAl [E}0 ] 6 PIOJUE)S
:ddds
[PAYT [PAYT [PAYT [PAYT [PAYT dwodnQ
-uIpns  -[0oYydS -Jupms  -sse[) -[00ydS
IPPOIA[ [PAT-T PPOIN [PAIT-€
DDI [euonipuodun

S[9AdT SNOLIE A JE (DD]) SUONE[ILIO)) SSE[ILIIU] [BUOIIPUOIU()
:SUOSLIEdwo)) [IPOJA [9AIT-OM I, *SA [9AI -, € d[qeL

13



represent intraclass correlations (that is, the proportion of total student variation that is at the school and at
the classroom level, respectively). In addition, what is not shown in the table but was documented
empirically is that, in all cases, the sum of the estimated nonstandardized three-level variance components

equals the sum of the estimated nonstandardized two-level variance components (as noted by Equation 3).

For SBPP Stanford 9 Math scores (represented by the first row in Table 3), the standardized
variance for schools in the three-level analysis equals .085. This means that 0.085 (or 8.5 percent) of the
total variation across students in the analysis sample (within district blocks) is estimated to reflect differ-
ences in mean outcomes across schools. In other words, the school-level intraclass correlation equals
.085. The standardized variance for classrooms in the three-level analysis equals 0.029. This means that
0.029 (or 2.9 percent) of the total variation across students in the analysis sample (within district blocks)
is estimated to reflect differences in mean outcomes across classrooms within schools. In other words, the
classroom-level intraclass correlation equals 0.029. The remaining proportion of total student variation
(0.886) is due to differences in outcomes for students within classrooms. If instead of using a three-level
model, variance components for the same data are estimated ignoring the classroom level, the estimated
school-level intraclass correlation is 0.097 and that for students within schools is 0.903 (see columns 4

and 5 in Table 3).

The important point to note about these findings is that the classroom-level variance in the three-
level model is shifted both to the school-level variance and to the student-level variance in the two-level
model. Specifically, the estimated school-level variance for the two-level model (0.097) is larger than that
for the three-level model (0.085), and the estimated variance for students within schools in the two-level
model (0.903) is larger than that for students within classrooms in the three-level model (0.886). These
differences are quite small, however, because the estimated classroom-level variance (0.029) is only a
small proportion of total student variation. These differences, and the degree of “level shifting” they
represent, are more pronounced for other samples in the table that have a greater proportion of their

variation at the classroom level.

Note that the estimated classroom variance for elementary schools is consistently a much smaller
proportion of total student variation than it is for secondary schools. For elementary schools this propor-

tion is always below 0.140 — and in most cases is well below this value. In contrast, for secondary
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schools the proportion ranges from 0.293 to 0.376.' This striking difference probably reflects more

extensive student tracking in secondary schools than in elementary schools.

Comparing Predicted Versus Actual Shifting of the Middle-Level Variance
Component

The empirical findings presented in Table 3 are consistent in direction with Equations 4 and 5,
which predict the upward and downward shifting of an ignored classroom variance component. However,
as already noted, Equations 4 and 5 assume a constant number of classrooms per school and students per
classroom, whereas the samples used to estimate variance components for the analysis presented in this
paper (and for almost all others in education research) comprise schools that vary in these regards. Table
4 thus assesses the extent to which this variation in the internal structure of schools (clusters) causes the
actual shifting in the classroom-level variance to differ from the amount of shifting predicted by Equa-

tions 4 and 5.

The first two columns in the table report the actual percentage of the classroom-level variance
that is shifted to the school level and student level respectively, and the last two columns present the
corresponding percentages that are predicted by Equations 4 and 5 based on the harmonic mean values for
the number of classrooms per school and students per classroom in the analysis sample for each data
source. Even though there was variability in the underlying cluster structure of the various data sets that
were explored by this analysis, the distribution of the classroom-level variance to the school and student

levels is fairly consistent with what the formula predicts.

It is also worth noting that even in situations where the percentage of variation shifted to each
level differs from the theoretical prediction, the difference between the predicted and actual amount of
variance that is shifted to each level may still be small if the middle-level variance component was small

to begin with, as is the case with most of the elementary school data used in this analysis.

'This pattern is also observed in the tenth-grade reading and math FCAT score for Florida secondary schools. The
class-level ICC for the FCAT math test score for grade 10 is 0.486 and for the FCAT reading test score for grade 10 the
class-level ICC is 0.348. Note, however, that at the secondary school level in Florida, math and English language/arts
courses are much more diversified (with over 50 math-related courses and over 80 English language-related courses to
choose from). Most students also take more than one such course in a year. In order to select a classroom for each student
that best corresponds to the end-of-grade math test or the end-of-grade reading test, the courses taken by a student were
ranked by how frequently those courses were taken by tenth-grade students, and the student’s classroom was defined by
the most frequently taken course. Because this classroom-assignment approach is rather arbitrary, these results were not
included in the main discussion of the paper but rather were used as references.
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Planning a Study: Estimated Minimum Detectable Effect Sizes

Given the estimated variance components based on the three-level and two-level models, the next
step in this analysis was to explore how not explicitly acknowledging the middle level affects the actual
estimates of minimum detectable effect size for each of the outcomes in the data — this indicates the
predicted level of precision one could expect to obtain for a study with a given sample size. The analysis
began by estimating the precision of three-level and two-level analyses for a planned study with a cluster
structure that is identical to the one from which the multilevel variances were estimated. For example, for
the SBPP it is assumed that the study being planned would include approximately two classrooms per
school and approximately four students per classroom (see Table 1). These findings do not necessarily
extrapolate to the typical situation in practice, where multilevel variances are computed from data for an
existing study and then used to design a future study with a different sample size and structure. This

situation will be explored later.

The findings from this analysis are presented in Table 5. The analysis uses the standardized
variance estimates from Table 3 plus the harmonic mean number of students per classroom and class-
rooms per school (as shown in Table 1) for each outcome measure to compute the minimum detectable
effect size for that measure given its original sample structure (within a school). The total number of
schools was assumed be 60, and there were assumed to be 30 treatment schools and 30 control schools for
all outcomes. Equation 1 was used to compute minimum detectable effect sizes for three-level analyses

and Equation 2 was used for two-level analyses.

The first set of columns in the table shows findings from models that do not include any co-
variates (other than treatment indicators and district indicator variables where applicable). The first
column presents the minimum detectable effect size for the three-level model for each measure, and the
second column shows the difference between the minimum detectable effect size for the three-level
model and the corresponding two-level model (the three-level estimate minus the two-level estimate).
Consider yet again the findings for the SBPP Stanford 9 math score. Assuming 60 schools with 2.06
classrooms per school and 3.72 students per class (from row 1, Table 1) plus the three-level standardized
unconditional variance estimates of 0.085, 0.029, and 0.886 for schools, classrooms, and students,
respectively (from row 1, Table 3), an unconditional minimum detectable effect size of 0.341 was
computed using Equation 1. Similarly, assuming 60 schools and an average of 7.67 students per school

(2.06 classroom x 3.72 students) and the two-level standardized unconditional variance estimates of 0.097

17



-ordures Apmys

AU} UI SIOLISIP [00YIS J0J SA[RLIBA JOJEIIPUI Sk [[om st sdnoIS [onuod pue judunear) SurysiSunsip 9[qeLIEA JOJRIIPUI U dPN[OUI SISA[RUE [[€ ‘UONIPPE U] "SI)ELIEAOD
()M S[OPOW J0J UOTIE[NO[ED SCIIA AU Ul Pasn san[eA parenbs-yf 9y} Urejqo o) [Opow Ay} Ul pasn d1oM dInseaw 3s0301d [9Ad[-JupPNIS € pue 3503o1d [9AS[-[00YDS Y
*SOJELIBAOD JNOTIIM QINSBAUI SUW0INO A JO [OPOUI [9AJ[-OM] B PUE [OPOU [9AI[-OIIY[) B WOIJ PIUTEIQO AIOM SUOTIR[OIIO0 SSE[ORIUI AU} 10 Sonjea pajewnsy :STLON

*91qe) S1y) ul puasald sisA[eue 9y} Wolj PApN]OXa d1e d[dwes oY) Ul SSe[o duo A[UO [Iim SJo0yds pue o[dures oy} ul JuapnIs U0 AJUO Yim
SOSSB[D) "G00 10J IU)) BR(] YoIeIsAY uoneonpy eurjore)) YUoN Y} pue ‘500z 10J (MAHA-Td) 9SnoyaIepy ele(] uoneonpy (z-3 s,uonesnpy jo jusuntedad epLofj
oy ‘oseqelep 1eak dn-mojjoy 1s1y (SI1¥) Apmis 10edwy is11,] Surpeay ay) ‘oseqeep 18k dn-mojjoy 151y (JddS) 102014 101 Isep{ealg [004dS Y], :SHDIYNOS

9200 €LT0 ¥20°0 ¥re0 0200 8070 SISy [00Y0S YSTH

6000 LETO €00 182°0 20070~ €6€°0 Anowoan [0oyds YSIH

0000 1€2°0 8200 L8T0 L10°0 0Z€0 Ansiuay) [004os Sty

100°0- 1€2°0 600°0 1LT0 6000 61€0 A3ojorg [00yog yStH

€10°0 LYTO 7200 61€°0 T10°0 89¢€°0 ¢ ©IQaS[V [00Y0S YSIH
‘Bje(] [00Y0S A1epuoodsg DN

0000 8S1°0 €000 061°0 100°0 S¥T0 G OpeIs 10§ 150} SUIPEY

100°0- 161°0 €000 Y170 100°0 Lo G opels 10§ 1891 YIEN
eye( [00YOS ATRjudwolg DN

00070 9¢1°0 L00°0 991°0 100°0 8ST0 ¢ opei3 10J 1531 Surpesy LvDd

0000 SS1'0 S00°0 €81°0 000°0 0870 G apei3 10§ 331 YIe]N LVOA
‘Breg _Oonow \CEEQEO_M T4

0000 2610 S00°0 1L1°0 100°0 9TT0 € 9peI3 159 uoIsudyPIdwod FuIpeal O LVS

1000 981°0 S10°0 ¥91°0 €000 LTTO 7 9peis 3593 uorsudyaIdwod Surpeal 0 LVS

S00°0- 91T0 €00°0- L6170 €00°0- 8ST0 [ opei3 159} uorsuayd1dwod Jurpedr 0] LVS
SIAA

000°0 €€¢0 S00°0 ¥ST0 100°0- 6€€°0 91098 pa[eds uIpeay [BI0], 6 PIojuelg
100°0- 91¢0 €000 96T0 00070 1¥€0 9I09S pafeds YL\l [e10L 6 piojuelS
:dddS
(AL TIATE)  PPOIN (AL ZIATE)  PPOIN (AL TIALE)  PPON wonnQ
NUARMJIQ  [PAYT-€ NUARPJIQ  [PAYT-€ NUAPJIQ  [PAYT-€

159191 [PAY [-IUIPMIS

JS9191J [PAY [-[00YDS

S3)EIIBA0) ON

(11 = D/L ‘09 = S[00Y2s JO #) IZIS JJJ I[q€IINI( WNUITUIA

aampanng drdures [eurd1Q (SAUAIA) SIZIS 199431 A[qeIII( WNWIUIA
uosiIedwio) [PPOJA] [9AIT-0M I, *SA [9AIT-IIIY L, UMY DU °S d[qeL

18



and 0.903 (from row 1, Table 3), an unconditional minimum detectable effect size of 0.342 was computed
using Equation 2. The difference between these two minimum detectable effect sizes (0.000) is shown in

the second column of Table 5.

Results show that for the elementary school data, where the classroom-level variance is relatively
small, the predicted level of precision is essentially the same, whether the study was planned using a two-
level analysis or a three-level analysis. For the elementary school data, estimates of minimum detectable
effect sizes from the two- and three-level models differ by less than .005 in all cases. While the differ-
ences in estimates of minimum detectable effects sizes are slightly larger among the secondary school
data, where the classroom-level variances components were substantially larger (ranging from 0.293 to
0.376), from a substantive perspective they remain quite small in absolute terms. So in the data sets
explored in this analysis, if one did not explicitly acknowledge the middle level of clustering in designing
a study with a data structure that was identical to the one used for planning purposes, one would, at worst,
overstate the minimum detectable effect size by 0.021 for the North Carolina physics exam, which is

about a 5 percent difference in precision. From a substantive perspective this is a small difference.

Including Covariates

The findings shown in Table 5 also move comparisons of two- and three-level analyses one step
further by taking the inclusion of covariates into account. In practice, baseline characteristics such as
students’ prior test scores and demographics are often used as covariates to improve the precision of
impact estimates; yet theoretical explorations of the implications of not explicitly acknowledging the
middle level assume that no covariates are included. Therefore, to see how the inclusion of covariates
would influence the results shown in the first column of Table 5, the researchers conducted a correspond-
ing set of analyses in which either a school-level pretest variable (second set of columns) or a student-

level pretest variable (third set of columns) was included.

To the extent that covariates predict the variation in outcomes across individuals, classrooms, or
schools, they reduce the “unexplained” variance at each of these levels. This, in turn, reduces the standard
error of the impact estimate. Therefore, with covariates, the formula for computing the minimum detecta-

ble effect size for a three-level model (Model A) becomes:

My, *\/rAz(l—RSZC)+}/AZ(I—RCZI)+0'A2(1—R52,)* 1
) J J*K J*K*NA \/Z'AZ +7A2 +O_A2 (6)

And for a two-level model (Model B) the formula becomes:
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Where R = the explanatory power of covariates for outcome differences between schools;

. = the explanatory power of covariates for outcome differences between classrooms with-

in schools;

st = the explanatory power of covariates for outcome differences across students within
classrooms; and
C = the number of school-level covariates in the model.

All other parameters are defined as in Equation 1 and 2.

The R-squared values are calculated as the proportion of each unconditional variance that is ex-

plained by the covariates, that is, for level L, where L = school, classroom, or student,

2 2
2 Oy, ~0Oc¢c1
R, =

2
Ou.,L

(8)

Where o/, is the unconditional variance at level L when no covariates are included in the mod-

el, o, is the conditional variance at level L when covariates are added.

Based on these estimated R-squared values (presented in Appendix Table A-1) and the original
unconditional variances presented in Table 3, it is possible to use Equations 6 and 7 to estimate the
minimum detectable effect size for the original sample given available covariates. To do so for the
school-level pretest, the researchers included the R-squared values obtained after including a school-level
pretest in Design A and substituted them in Equation 6 above. For the student-level pretest, the research-
ers included the R-squared values obtained for school, classroom, and student levels after including a
student-level pretest in Design A. In all cases, the unconditional variances and total number of students,

classrooms, and schools remained the same as in previous models.

The findings from these analyses are presented in the second and third sets of columns in Table 5.
The first point to notice about these results is that including a pretest as a covariate at either at the school
or student level causes an overall reduction in the minimum detectable effect size (a finding that is
consistent with prior research). Take again the SBPP math score. Without covariates, the MDES for the
three-level analysis is 0.341. With a school-level pretest variable, the MDES from the three-level analysis
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is reduced to 0.256 and with a student-level pretest, the MDES from the three-level analysis is reduced to

0.316. A similar reduction is seen in the two-level models.

The second point to notice about the results presented in the second and third set of columns in
Table 5 is that including a school-level covariate in the models used to estimate the MDES tends to
exacerbate the difference between the predicted MDES obtained from a three-level analysis and the
comparable two-level analysis relative to models that included no covariates. In all instances, the differ-
ence between the three-level and two-level estimate of MDES is larger than in the unconditional model.
Furthermore, in all cases the minimum detectable effect size would be underestimated if a two-level
model were used. This is because including the pretest at the school level reduces the variance at the
school level, thereby increasing the relative amount of variance that is accounted for at the classroom
level. In other words, there is relatively more classroom-level variance that could potentially be shifted to
the school level when the middle level is not acknowledged. However, the differences between the two-
and three-level analyses remain quite small, especially for the elementary school data. The largest
difference is 0.032, for the North Carolina high school geometry test. Thus, although the inclusion of a
school-level pretest makes the difference between the two- and three-level analyses larger, in no case does

one observe a distortion that is substantively important.

On the other hand, as can be seen in the third set of columns, the inclusion of a student-level pre-
test variable reduces the difference between the estimated MDES obtained from the two- and three-level
analyses. In all instances, the differences between the predicted MDES from the three- and two-level
analyses are smaller when the student-level pretest variable is included than is the case for the uncondi-
tional analyses. Additionally, including a student-level pretest seems to eliminate some of the largest
differences that were observed in the unconditional analyses. With the inclusion of the student-level
pretest variable, for example, the difference between the two- and three-level analyses for the North
Carolina high school chemistry test is reduced from 0.017 to 0.000. The largest difference between the
predicted MDES from the three- and two-level analyses is 0.026 (North Carolina physics) when a
student-level pretest is included. Note that algebra I scores were used as pretest measures for North
Carolina secondary school subjects. This large difference may reflect the fact that algebra I is not a very
good proxy for students’ previous knowledge of physics. It is not hard to see why including the student-
level pretest helps to reduce the problem. As shown earlier, the problem in the secondary school data is
being driven by the large classroom-level variance component. If a student-level pretest is included, this
classroom-level variance component is reduced substantially because much of it is accounted for by the

student-level covariate. On the other hand, including a school-level pretest tends to exacerbate the
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problem because the school-level pretest only reduces variance at the school level, making the relative

size of classroom-level variance even bigger.

In summary, these findings illustrate that minimum detectable effect sizes computed from a two-
level analysis, even when school-level or student-level covariates are included, are quite similar to those

computed from a three-level analysis with the same data and covariates.

Varying the Sample Structure

The findings presented in Table 5 do not necessarily extrapolate to the typical situation in practice
where multilevel variances are computed from data for an existing study and are then used to design a
future study with a different sample structure. One way to emulate this common situation is to vary the
assumed sample structure and recompute minimum detectable effects for two-level and three-level
analyses. Tables 6 and 7 show what the implications would be for planning a study when the underlying
cluster structure has twice as many classrooms per school as the study being used to compute the MDES
(Table 6) and what the implications would be if the study being planned had half as many classrooms as
the study being used to compute the MDES (Table 7). Note in all cases that the total number of schools as
well as the total number of students per school remain constant, and thus the two-level estimates used to

create Tables 6 and 7 are the same as those used to create Table 5.

Recall that the original SBPP Stanford math data had approximately four students per classroom
and two classrooms per school (see Table 1). Table 6 explores the implications of planning a study in
which, instead of having two classrooms per school and four students per classroom, there are instead
four classrooms per school with two students per classroom. As before, the first set of columns in Table 6
show results for analyses without covariates. The second set of columns show analyses in which a school-
level pretest is included and the third shows the results of analyses in which a student-level pretest is

included.

The findings in Table 6 illustrate that when the number of classrooms per school is doubled and
the number of students per school is held constant, the minimum detectable effect sizes computed from a
two-level analysis with or without covariates are almost identical to those computed from a three-level
analysis with the same data and covariates. Thus, if you are planning a study in which the number of

classrooms per school is greater than the number in the study used to compute the MDES, using a two-
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level model for analysis purposes will provide good estimates of the MDES, even though the middle level

is not being accounted for explicitly.

Table 7 shows corresponding findings after halving the number of classrooms per school but
holding constant the number of students per school. The results shown in Table 7 also indicate that, with
the exception of the North Carolina secondary school data, the MDESs from the two- and three-level
analyses yield quite comparable results, even though the sample structure has changed substantially. For
the elementary school data, the difference between the estimates of MDES derived from the two- and
three-level model are never more than 0.031. However, for the North Carolina secondary school data the
differences between the estimates obtained from the two- and three-level analyses are much more sizable,
ranging from 0.073 to 0.099. When a school-level pretest is added to the model (second set of columns)
— a step that, as seen earlier, tends to magnify the difference between the two- and three-level models —
the differences in MDES between the two models range from 0.093 to .0.126 for the various North
Carolina secondary school outcomes. In this instance, using a two-level model to estimate the MDES in a
study where the underlying data structure is actually comprised of three levels could be misleading. Yet,
as also demonstrated earlier, including a student-level pretest (third set of columns) can reduce the
difference between the estimates obtained from the two- and three-level models and help mitigate

problems. In this case, the inclusion of the student-level pretest does reduce the differences substantially.

Planning a Study: Summary

Given these findings, what are the implications of planning a study that randomizes groups com-
prised of three levels of variation without explicitly accounting for the middle level? The preceding
discussion shows that in almost all instances the MDES obtained using two levels of data (for example.
students clustered within schools) is very similar to what would have been obtained with data at three
levels (for example, students clustered within classrooms within schools). This is true even when the data
being used for planning purposes have a variable cluster structure, include covariates at the student level
or school level, or do not reflect the same underlying structure as the sample used in the actual study (that
is, same number of students per classroom and classrooms per school). The similarity of MDESs is
especially true for data in which the variance component at the classroom level is relatively small —
which is usually the case in elementary schools. When the classroom-level variance component is large,
the difference between the estimates derived from the two- and three-level analyses can in rare cases be
meaningful, and the addition of a school-level pretest variable can make this problem worse. But includ-

ing a pretest variable at the student level can help eliminate this problem under most circumstances.
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Analyzing Data with a Three-Level Structure Using a Two-Level Model
Until now the discussion has focused on planning future studies using three-level data when the
extant data lack information at the middle level, that is, the classroom level. We now consider the analysis
of the data from the impact study itself: Specifically, does the point estimate and estimated standard error
for an impact at the school level remain the same whether or not the middle level of a three-level situation
is considered explicitly? This question is particularly important, since in many instances researchers are
not able to explicitly link students to classes within schools and have no choice but to estimate a two-level

model that does not explicitly consider the middle level of the data structure.

It has been shown that estimating a three-level model using feasible generalized least squares that
fully account for the clustering in one’s data will provide consistent and asymptotically efficient estimates
(Cheung, Fotiu, and Raudenbush, 2001). The questions here are whether researchers can obtain consistent
estimates of program impact if they misspecify the model by not explicitly accounting for the middle

level of clustering and whether the resulting estimates will be asymptotically efficient.

It can be shown that for samples with a constant number of students per classroom and class-
rooms per school and no covariates at the student, classroom, or school level other than the treatment
indicator at school level, one will obtain identical estimates of program impacts and identical estimates of
standard errors whether or not the middle level of a three-level situation is explicitly acknowledged.”
However, as was the case when MDESs obtained from two- and three-level models were considered,
these proofs only hold for data that have a cluster structure that remains constant across clusters (that is,
schools), which is rarely the case in practice. In addition, the proofs do not take into account situations in
which covariates are included at the student or school level — a situation that also frequently occurs.
Furthermore, the proofs are for expected values of the estimators being considered, not for specific
estimates from a given sample. To explore how well conclusions from the proofs hold for a broader and

more realistic range of data structures, the paper returns to its empirical analyses.

Table 8 shows coefficient estimates and estimated standard errors for a school-level treatment in-
dicator using both a two- and three-level model for the four data sources in the study. As discussed in the
data section, since specific interventions for the Florida and North Carolina data are unavailable, school-

treatment status was randomly assigned so that half of the schools in those two states are in the treated

2Proof of this statement is available from the authors upon request.
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group and the other half in the control group. The first four columns include no covariates other than a
treatment-status indicator and indicators for districts. Columns 5 through 8 show models with a school-

level pretest included and columns 9 through 12 include a student-level covariate.

While the point estimates and standard errors shown in Table 8 are not exactly the same for the
two types of analyses, they are in most instances quite comparable whether or not covariates are included
at either the school or student level. Even in the instances where the point estimates and standard errors
differ somewhat, the same inferences would be drawn from a two-level or a three-level model. For
example, for the RFIS data the impact estimate for the second-grade test was -3.35 with a standard error
of 1.73 when the impact was estimated using a three-level model. The corresponding two-level model
yielded an impact estimate of -2.98 with a standard error of 1.72. Both point estimates are similar in
magnitude and neither is statistically significant, so in both instances the evidence indicates that Reading
First had no impact on second-grade SAT 10 reading scores. These findings hold across data sets of

widely varying sizes and structures.

As was the case for planning a study, these findings suggest that a two-level model can be used to
estimate program impacts even when it does not explicitly acknowledge a middle level of clustering. This
is particularly true when the middle-level variance component is small, as is the case for most elementary
school outcomes. However, the finding also holds for secondary school data, where the classroom-level
variance component is relatively larger, and for situations where the cluster structure varies across the

schools in the sample and when covariates are included in the model.

Conclusions

As noted, this paper is intended to provide practical guidance to researchers who are designing
and analyzing studies that randomize schools to measure intervention effects on student academic
outcomes when no information is available about the middle (classroom) level of clustering. Using four
multisite data sets based on academic outcomes for students within classrooms within schools, the paper
has explored in detail the implications of not explicitly acknowledging the middle level when planning or
analyzing data in which the coefficient of interest is at the third (school) level. The analysis shows that in
almost all situations one will obtain nearly identical results whether or not the classroom or middle level
is acknowledged explicitly. With one exception, this conclusion holds for both elementary school data
(for which the classroom variance component is typically quite small) and for secondary school data (for

which the classroom variance component is somewhat larger), for data sets with varying numbers of
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student per classroom and classrooms per school, in situations where covariates are included at either the
student or school level, and in situations where the cluster structure of the study being planned differs
substantially from the one used for planning purposes. The only potential problem arises when the
middle-level variance component is large (which is usually only the case for secondary school data) and
when the study being planned has a markedly different cluster structure than the study that was used for
planning purposes. Even in this kind of situation, if a student-level pretest variable is included in the
models, any potential problems that may arise can be virtually eliminated. Thus in most situations

researchers can proceed with two-level analyses of three-level data without too much cause for concern.
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Appendix A

Three-Level vs. Two-Level Model Comparisons:
Estimated R-Squared for School- and
Student-Level Covariates
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