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Abstract Body

Background:

In the past decade, cluster randomized trials (§R&ve emerged as a common design
in the evaluation of educational interventionstdct, since 2002, the Institute of Education
Sciences (IES) alone has funded over 100 CRttp:(/ies.ed.goy/ The purpose of these
studies is to build a base of reliable evidencavhith to base education practice and policy
(Whitehurst, 2003). In order to yield high-qualégd reliable evidence, the studies must be well-
designed and implemented. Although there are maest$ to a strong design and
implementation, | restrict this study to an exartioraof key components of the research design.

A critical component of the design is adequatastieal power. However, the term
statistical power is rather general and thus shbaldualified by adequate statistical power to
detect what? Much of the work to date has focusestatistical power to detect the main effect
of treatment for different types of CRTs (Bloom080 Donner and Klar, 2000;
Konstantopolous, 2008; Murray, 1998; Raudenbusi?;18@udenbush & Liu, 2000; Authors,
2007; Schochet, 2008). Authors (2009) examinedCiRé&s funded by IES between 2002 and
2006 and found that they were powered to detectia effect of treatment ranging from 0.18 to
0.40 and 0.20 to 1.0 for studies funded by theadwati Center for Educational Evaluation and
Regional Assistance (NCEE) and the National CeoteEducational Research (NCER),
respectively. The precision of the studies incrdaseer the 4 year time span, suggesting that
researchers were becoming more adept at plannidgestto detect a meaningful treatment
effect.

However, an important problem facing educatioeaeshers is that the main effect of
treatment may be of limited utility to a practitemn a particular school or site if the treatment
effects vary substantially from site to site. slplausible thatontext matters in education
(Berliner, 2002; Cohen, Raudenbush, & Ball, 2062). example, an intervention may be more
effective for low-income students than for highange students or in urban schools compared to
rural schools; its effectiveness may depend orskileand knowledge of the teachers or the
resources available to a school. Understandingdh&ext in which an intervention is likely to be
effective will make the results more applicable #metefore more useful to different schools,
districts, and students. Thus powering a studyffermain effect of treatment may not always be
sufficient.

Purpose:

The purpose of this paper is to twofold. The folsfective is to examine how to calculate
power for three types of treatment heterogeneitjuging 1) the variability in treatment effects
across sites, 2) site-specific treatment effectd,3 moderator effects at the cluster or student
level. The second objective is to examine the pdweletect each type of treatment effect
heterogeneity on a set of funded CRTs. Given thgtheof this proposal, | primarily focus on
the empirical findings from the set of funded CRTBe power calculations are included in the
full paper.

Sample

The sample includes the studies in the first weM@RTs funded by IES, or those funded
between 2002 and 2006 by NCER and NCEE. Theseestuejpresent a range of CRTs on
various topics and with different research desmymd sample sizes. The majority of these studies



were not explicitly required to be powered beydmel ihain effect of treatment so these studies
are used simply to demonstrate the power of affehded CRTSs to detect heterogeneity of
treatment effects.

| identified a total of 54 CRTs of educational exations in pre-K through grade 12 in the
first wave of studies funded by IES. Forty-nindlodse studies are included in the current study.
The relevant design and sample size informationwmasailable for the remaining 5 studies at
the time of this paper. Of the 49 studies, 41 vieneled by NCER and 8 were funded by NCEE.
The majority of the studies targeted pre-K and eletary students (approximately 65 percent).
A variety of topic areas were represented including not limited, to social and character
development, math and science, teacher professievalopment, and literacy, reading, and
writing with the majority of the studies focused thie latter area (approximately 42 percent).

The 49 studies can be represented by four typ€&Radfs: 2-level CRT, 3-level CRT, 3-
level MultisiteCRT (MSCRT), and 4-level MSCRT. Tall in Appendix B provides the basic
features of each design and the number of studieadh category. From the table, we can see
that multisite trials were the most common designs.

Statistical Models:

For illustration purposes, | provide the modelsd@-level MSCRT with a brief
description of the relevant power analyses. Asstiraethe level-one units are students, the
level-two units are schools, and the level-threigsyor the sites, are districts. Using HLM
notation (Raudenbush & Bryk, 2002), the studer¢llevodel is:

Yik = Mo + € (1)
wherey,, is the outcome for individudl={1,...,n} in schoolj ={1,...,3} in districtk = {1,...,K}
, T, 1s the mean for schopin districtk; and g, ~ N (0, 0?) is the error associated with each
student. The school-level model is:

i = Booc + BouT ik + Toji (2)
whereT, is an indicator for the treatment or control growfth -%2 for control and %2 for
treatment;3,,, is the mean for distridt g,,, is the treatment effect for distriktand
i ~ N(0,7,) is the error associated with each school. Theictis¢ével model is:

Book = Vooo + Yook
Bow = Voro + Uoxc 3)
where ,, is the overall meany,,, is the overall treatment effect.
We can choose to treat the district effectg, andu,, as fixed or random effects,

depending on the goal of the study. If the purpmidbe study is to generalize to a larger
universe of sites, then the sites are treatedraora effects. In this case,, represents the

random effect associated with each site meanwgpds the random effect associated with each
site treatment effect where vag(, )=7, and var(u,, )=74_ .

However, if the goal is not to generalize to adol@r universe of sites, then the sites are
treated as fixed effects. More specifically,, , for k 0{12,...,K} , are fixed effects associated

! The models and power calculations for all desigespaovided in the full paper.
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with each site mean, constrained to have a meaearof andu,,, , for k 0 {12,...,K} , are fixed

effects associated with each site treatment eféectstrained to have a mean of zero.
Variability in Treatment Effects Across Stes
The variability in treatment effects across siteselevant for studies where the sites are

treated as random effects. The treatment effecabidity is defined as var(, )=7,4 in

equation 3 when the sites are random effects. &teof the null hypothesiblo: 7, =0 relies on

anF test as defined by Raudenbush & Liu, 2000; Auth?@€9.
Ste-gpecific Treatment Effects

Estimating site-specific treatment effects is appiade when sites are treated as fixed
effects or the variability across sites is sigrifit | focus on the case of fixed site effects tued

power for the test of the null hypothedi; u,, =0 (equation 3) is the same as the main effect of

treatment in a single site and is largely depenttenhumber of clusters per site (Kirk, 1982).
Moderator Effects

In statistical terms, moderator effects are inteoas between the moderator variable,
such as district type, and the treatment effeexplore power for moderator variables at the
individual, cluster, and site levels. The poweprignarily influenced by the sample size
corresponding to the level of the moderator andetel of the treatmefit

Findings:

For all analyses, | used empirical estimates oigthgsarameters based on the recent
work of Bloom, Richburg-Hayes, & Black, 2007; Fl&yCollins, 2005; Hedges & Hedberg,
2007. The design parameters are given in TableAppendix B.

Variability in Treatment Effects Across Stes

As noted in the models section, the variabilityreatment effects across sites is only
relevant in the multisite trials. Further, it islpapplicable to studies in which sites are treated
random effects and studies that are not matched gesigns since the matched pairs design
confounds the treatment-by-site-variance and thieinvcluster variance. In total, there are 9
studies that meet the criteria. For each of thea@iss, let us assume that the main effect of
treatment is 0.30. If the effect size variability@ss sites (esv) is 0.01, the interval around the

treatment effect i©.30+ 2(\/ 0.0i):( 0.10,0.5)(. In other words, across the sites, the treatment

effect may vary from 0.10 to 0.50. These values b@yeasonable and although the magnitude
of the effect may vary across sites, it is alwaysifive. Now suppose that the esv is 0.03. This

creates an interval fror.30+ 2(\/ 0.0Q) = (— 0.046,0.64}‘. In some sites, the treatment effect

may be 0 or even a small negative value. While \ag oonsider that 0.03 is still a reasonable
esv, it is likely that we would want to be abledietect it because it suggests that the treatment
effect may be 0 in some sites. Hence from a powesgective, we might want to power a study
to detect a minimum detectable esv (mdesv) of O0l@Ble 3 in Appendix B presents the mdesv
for the 9 studies. Only 1 study is powered to dedemdesv in the range of 0.03. One additional
study is powered for a mdesv around 0.056. In ¢ngaining 7 studies, the mdesv is greater than
0.09. In these studies, if an esv less than 0.@8mningful, it would likely go undetected in
these studies.

’ The noncentrality parameter for the power for &t of the moderator effects are included in tiigoper. The
R code is also included in the paper.



Ste-gpecific Treatment Effects

| calculated the mdes for site specific treatmeffiscts for multisite trials that treated the
sites as fixed effects. There were 10 studiesrtiaithe criteria. Table 4 in Appendix B presents
the mdes for the site-specific treatment effectf Bif the studies were powered to detect an
mdes between 0.41 and 0.60 whereas the remainidggstwere powered to detect an mdes
greater than 0.80. Although an mdes greater tHgMi6.outside the range of what is often seen
in studies of educational interventions, a rangenff.41 to 0.60 is nearer to what may be
deemed reasonable. However, an effect size lestha is often practically meaningful and
would likely be undetected in these studies.
Moderator Effects

Currently | have calculated the power for the nmratte effects for all studies at the level
of the treatment. For example, for a 2-level CRAave power for a cluster level moderator, etc.
The full paper will include power for moderatoresfts at all levels. The mdes for moderator
effects at the level of treatment for each studjisplayed in Figure 1in Appendix B.
Approximately 16 percent of the studies were ablddtect treatment-level moderator effects
between 0.20 and 0.40 with an additional 25 perpentered to detect treatment-level moderator
effects between 0.40 and 0.60 and the remaininged&nt powered for greater than 0.60.

Conclusions:

For the past 10 years, we have focused on powstutljes to detect the main effect of
treatment and the result is that it is becomingemammmon to have studies with solid designs
and adequate power to detect the main effect afrtrent. However, because of the importance
of context in education, it is time to move beydhd main effect of treatment in designing
CRTs. The full paper describes three types ofrimeat effect heterogeneity and examines how
to calculate power for each type. In this proposdcus on the findings from applying the
power calculations to the first wave of CRTs funtégdES.

Overall, the sample of studies had minimal powetdtect a reasonable level treatment
effect variability across sites. Approximately halfthe studies examined had power to detect
site-specific treatment effects in the range 00@a10.60, which is on the high side of what
empirical work has revealed to be reasonable e$iees in achievement studies for example.
The mdes for treatment level moderator effects veween 0.20 and 0.60 in almost 40 percent
of the cases, which is positive, although the niaglei of typical moderator effects may be
smaller than the main effect of treatment and 8hauld also be considered. A key challenge is
that maximizing power to detect the main effectreatment may not be consistent with for
example, maximizing power to detect treatment éffaciability across sites, which makes it
difficult to meet both objectives given the sizenwdiny of the studies in this sample and more
broadly many of the CRTs in the field.

For researchers designing future CRTs with the gbaloving beyond the main effect of
treatment, we recommend prioritizing the type dehegeneity of interest and considering the
heterogeneity in addition to the main effect oatreent in the planning of the study. However,
given the current size and scope of studies, pogdar a specific type of treatment effect
heterogeneity may not always be feasible. In thgeg¢it is most appropriate to explicitly address
the lack of power to detect treatment effect hefeneity so that these analyses may be noted as
exploratory since they are underpowered.
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Appendix B. Tablesand Figures

Table 1. The basic design features of the CRTdiftlhin the study proposals

Three-Level Four-Level
Two-Level Cluster Three-Level Multisite Clustel
Cluster Randomized Multisite Cluster Randomized
Randomized Trial Trial Randomized Trial Trial
Level of
Randomization 2 3 2 3
Blocking No No Yes Yes
Number of
Studies 8 5 30 6
Students,
Students, Students, Classroom,
Example of Students, Classrooms,  Classrooms, Schools,
Nesting Schools Schools Schools Districts

Table 2. Design parameters for calculating poweh&ierogeneity of treatment effects.

ICC Level 2 ICC Level 3 R2 Level 2 R2 Level 3

2-level CRT 0.15,0.0.2 NA 0.6,0.6 NA
3-level CRT 0.07,0.02 0.15,0.05 NA 0.6,0.6
MSCRT 0.15,0.02 NA 0.6,0.6 NA
TRMT L2
MSCRT 0.07,0.02 0.15,0.05 NA 0.6,0.6
TRMT L3

Note. The first number was used for academic outcomes. The second number was for non-academic outcomes.



Table 3. Minimum detectable effect size variabifiy power = 0.80.

Minimum detectable ESV Frequency

0.0 -0.030

0.031 - 0.060
0.061 - 0.090
0.091-0.120
0.121-0.150
0.151-0.180
0.181-0.210

Greater than 0.211

=
U.IOOHI—‘OI—‘

Table 4. Minimum detectable effect size for sitedfic treatment effects.

Minimum detectable ES Frequency

0.00-0.20
0.21-0.40
0.41 - 0.60
0.61 - 0.80
0.81-1.00
Greater than 1.00

r\)(J.)OU'IOO
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14 4
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10 +
8 -
6 -
4
2 l
0

-0.2 0.2-04 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.2 >1

minimum detectabl e effect size

Figure 1. Minimum detectable effect size for motl@raffects at the level of the treatment.



