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Abstract 

 

The present paper, which is intended for a diverse audience of evaluation researchers, applied 

social scientists and research funders, provides a broad overview of the conceptual and statistical 

issues involved in using multi-site randomized trials to learn about and from variation in program 

effects across individuals, across policy-relevant and theoretically-relevant subgroups of 

individuals and across program sites. Learning about variation in program effects involves 

detecting and quantifying this variation. Learning from variation in program effects involves 

studying the factors which predict or explain it. The paper has four parts plus a brief final 

discussion.  Part One introduces the concepts and issues involved. Part Two focuses on detecting 

and quantifying variation in effects of program assignment, which are often referred to as effects 

of intent to treat (ITT). Part Three extends the discussion to variation in effects of program 

participation, which are often referred to as a complier average causal effect (CACE) or a local 

average treatment effect (LATE). Part Four considers moderators of program effects (individual-

level or site-level factors that influence the sign and magnitude of these effects) and mediators of 

program effects (individual-level or site-level “mechanisms” by which these effects are 

produced.       
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Learning About and From Variation in Program Impacts Using Multi-site Trials 

 

 

Part I:  

Introduction 

 

For over 50 years, local, state and federal agencies and private foundations have sought to 

identify and support effective new programs to improve the life chances of young children, 

youths and adults. These programs aim to help participants acquire new skills and educational 

credentials, find jobs, stay out of trouble with the law, and form and maintain healthy families. 

Committed teachers, administrators, service providers, and social scientists have designed these 

programs, often with the hope of helping the nation’s most disadvantaged populations.  

 

 Research evidence plays a central role in this conception of social improvement. 

Innovators generate lots of promising ideas, but not all ideas work out in practice. Some 

programs are hard to implement at a large scale; others, when implemented, do not produce the 

benefits expected of them. Therefore, accurate and objective evidence about the impacts of new 

programs is essential for discovering truly effective practices. But such evidence is not so easy to 

acquire.  

 

The Problem of Causal Inference about Program Impacts 

 

To make a valid causal statement about the impact of a new reading program, drop-out 

prevention program or job-training initiative it’s not enough to just measure the gains made by 

program participants. One must also be able to estimate how participants would have fared had 

they not had access to the program; and for this purpose one needs a valid comparison group, 

that is, a group of individuals who are similar to those in the program at the outset of the study 

but who do not participate in the program. The impact estimation strategy is then to compare 

future outcomes of program group members to those of comparison group members under the 

assumption that comparison group outcomes tell us what “would have happened” to the program 

group without the program. 

 

However, finding a good comparison group can be very difficult. For example, persons 

who decide to participate in a new program may be more motivated, skilled, or resourceful than 

persons in a study’s comparison group. In other cases, persons assigned to a program may be 

more troubled or less skilled than those not assigned. In these situations, it’s hard to know 

whether future differences in outcomes for the program and comparison groups reflect the 

impact of the program or simply reflect pre-existing differences between the groups being 

compared. One strategy for addressing this problem is to measure the prior skills and motivation 

of program and comparison group members and use statistical methods to adjust for pre-existing 

differences in these characteristics. However, this strategy requires the identification and 

measurement of all crucial “confounding variables,” that is, all characteristics of sample 

members which predict their program assignment and their future outcomes. The burden is thus 
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on the evaluator to convince a skeptical audience that all crucial confounders were known in 

advance and accurately measured. This is a tall order. 

 

To overcome this comparison-group challenge for testing new medical treatments, 

scientists embraced the randomized controlled trial (RCT) after World War II. The idea of 

randomly assigning units to alternative treatments or to a specific treatment and a non-treatment 

“control group” had its origins in agricultural research during the early 20
th

 century, and medical 

researchers borrowed the accumulated knowledge about how to design and analyze such studies.  

 

 In addition, over the past 15 years, policy makers have funded a large number of RCTs to 

evaluate a wide range of new and existing programs that aim to improve the life chances of 

young children, youths or adults. As a result, we have learned a great deal about the effectiveness 

of pre-school education, charter schools, remedial math and reading interventions, after-school 

services, teacher professional development, career academies, job training programs, social 

service programs, criminal justice programs and more. The beauty of the RCT for this purpose is 

that if well implemented, it provides an unbiased estimate of the average impact of a new 

program on a target population. This is because random assignment to treatment or control status 

eliminates selection bias that might otherwise exist if persons assigned to the new program were 

more – or less – skilled, motivated, or otherwise advantaged or disadvantaged than persons in a 

non-experimental comparison group. 

 

A Critical Review of RCT Practice 

 

 At two recent national conferences, researchers and research funders met to critically 

review the design and analysis of RCTs. In October, 2013, with funding from the William T.  

Grant Foundation, leading social scientists and research funders met in Chicago to consider ways 

to improve educational RCTs funded by the US Institute of Education Sciences (IES), by the 

Foundation itself, and by other funders of research in education and related fields.
1
 In 

September, 2014, the Administration for Children and Families (ACF) sponsored a related 

conference in Washington, DC to consider how its programs and those of other federal, state and 

local agencies might be more productively evaluated.
2
 

 

 Analyses of most RCTs have focused mainly if not exclusively on a single question: 

What is the average impact of a new program on persons that it is intended to serve? This is a 

crucial question and one that is often not easy to answer even with an RCT, in part because of 

non-compliance with random assignment. Such non-compliance occurs when some persons 

randomly assigned to a program that is being evaluated do not participate in it, and some persons 

randomly assigned to the program’s control group do participate in the program. Other problems 

that frequently occur with RCTs (as well as with other types of evaluation designs) include 

missing follow-up data for some sample members, missing data for some baseline characteristics 

1
 Conference on Learning from Variation in Program Effects sponsored by the William T. Grant Foundation 

(Chicago, Illinois: October 7 – 9, 2013).  
2
 Conference on What Works, Under What Conditions, and How? Methods for Unpacking the “Black Box” of 

Programs and Policies sponsored by the Office of Policy, Research and Evaluation of the Agency for Children and 

Families of the U.S. Department of Health and Human Services (Washington, DC: September 3 – 4, 2014).   
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for some sample members, and errors of measurement for key outcomes. Fortunately, 

methodologists have created ingenious strategies for coping with these challenges. 

 

 However, notwithstanding these methodological advances, participants in the two 

conferences noted that despite the importance of learning about average program impacts, this 

knowledge by itself is insufficient for the future development of public policy, professional 

practice or program theory. What is also needed is an understanding of whether program impacts 

vary, by how much, and why. Thus conference participants made the case that we can benefit 

substantially from learning more about and from heterogeneity of program impacts. 

 

Learning About Heterogeneity of Impacts 

 

 First, we need to know a great deal more about variation in program impacts. For 

example, we can learn a lot about the generalizability of findings from an RCT by detecting and 

quantifying variation in program impacts. And we can often do this without imposing (or 

assuming) a theory or model of who will benefit most or least from a program. Among other 

things, learning about variation in program impacts involves quantifying this variation, assessing 

the equity of this variation and studying site-specific impacts.  

 

 Quantifying variation: To what extent do participants vary in their response to a new 

program? To what extent does the impact of a new program vary across program sites? If 

individuals vary little in their response to a new program and if sites vary little in their average 

program impacts, the overall average impact is a truly valuable summary of evidence about 

program effectiveness. However, if persons vary greatly in their response to a program or if sites 

vary greatly in their average program impacts, the overall average program impact is a much less 

useful guide for policy makers who might contemplate adopting the program or for practitioners 

who would like to know how to improve it. Hence, we need to learn more about whether and to 

what extent impacts vary across individuals, subgroups of individuals and sites. 

 

Assessing equity: In multi-site trials, we can study the correlation between the control-

group mean and program impacts across sites. If we learn that program sites that serve 

individuals who would do especially poorly without the new program produce above-average 

impacts, we have evidence that the program will tend to reduce inequality. But if we learn that 

program sites that serve individuals who would do especially well without the program produce 

above-average impacts, this is evidence that the program will tend to increase inequality. We can 

assess program equity in this way without relying on strong theoretical assumptions. However, 

evaluators rarely ask this question, and currently available statistical methods do not answer it 

reliably. 

 

 Studying site-specific impacts: To properly evaluate a program we need to know what 

fraction of its participants benefit from it and what fraction, if any, fare less well with the 

program than they would have without it. For this purpose we can capitalize on the fact that most 

RCTs in education and social program research are multi-site trials. Thus outcome data for the 

control group at each site provide a valid estimate of how its program group would have fared 

without the program. Consequently we can obtain a valid estimate of the program effect for each 

site. This information makes it possible to assess, among other things, the effectiveness of the 
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most and least effective sites. And in some cases, knowing how effective a program can be is as 

important as knowing how effective it is on average – particularly if one can find ways to learn 

from best practice.  

 

Learning From Heterogeneity of Impacts 

 

 Having learned about the existence and magnitude of variation in program impacts, a 

great deal can also be learned from this variation. The idea here is that heterogeneity of impacts 

creates opportunities for testing theories about what social scientists call moderation and 

mediation of impacts. 

 

 Moderation of impacts: In theory, the impact of a program can vary because some types 

of persons are more likely than others to participate; because some types of participants benefit 

more than others from the program; because staff at some program sites are more skilled than 

staff at other sites, or because existing services available outside of the program are more widely 

available and/or more effective at some sites than at others. In this paper, we define as 

moderators any characteristics of clients and sites that (a) cannot be influenced by the 

intervention and that (b) facilitate or inhibit program effectiveness.   

 

 Under our definition, any characteristic of a person or a site that is observable prior to 

random assignment is a potential moderator. However, we also can envision as potential 

moderators some characteristics that change over time. For example, the local unemployment 

rate, which changes over time, may influence participant’s motivation to stay in school or attend 

job training and affect his chances of finding a job after attending training. If the intervention 

cannot plausibly influence the local unemployment rate then we can regard the local 

unemployment rate as a potential moderator. In contrast, the effectiveness of staff practice 

observed after the intervention is implemented cannot, in our view, be a moderator of the effects 

of random assignment. This is because such practices can be influenced by the program being 

tested. Indeed, in many cases this influence is part of how the program is intended to work. We 

refer to such variables as potential mediators of program effects. 

 

 To explore potential moderators it is common practice for evaluators to conduct 

secondary analyses to determine whether certain client subgroups (defined, by their gender, 

ethnicity, social background, risk of failure, etc.) benefit more than others from a program. It is 

much rarer to find an evaluation that is founded on a moderation theory: that is a theory of who 

will benefit most or least from the program being studied and what organizational conditions are 

most important for its success. Yet posing and testing such theories using sound analytic 

methods would significantly increase the ability of evaluations to explain heterogeneity of 

impacts and thereby better inform future program practice and design. 

 

 Mediation of impacts: Programs are effective if they are implemented well, if their 

implementation modifies the practices of program staff, and if these changes in practice help to 

generate skills, dispositions, and experiences which produce favorable outcomes for participants. 

We define as mediators those aspects of program implementation, staff practice, and short-term 

changes in participants’ knowledge, skills, attitudes or behavior that are (a) outcomes of random 

assignment; and (b) predictors of participants’ long-term success. These are often regarded as 
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mechanisms through which programs produce long-term benefits. Our definition allows for the 

possibility that the association between a mediator and the outcome can depend on treatment 

group assignment. For example, in a job training program, it may be the case that a new program 

is better at fostering high levels of motivation to work than would arise in the control condition; 

and that high levels of motivation are more predictive of later earnings among program group 

participants than among control group participants.  

 

 Program sites that are better at generating a program’s mediators will, in theory, produce 

more favorable impacts on participants’ outcomes. So heterogeneity of program impacts on 

mediators can, in principle, explain heterogeneity of program impacts on participants’ outcomes. 

Nonetheless, although most programs are founded on a theory (which is implicit more often than 

it is explicit) regarding how program operations influence key mediators and how these 

mediators promote long-term outcomes, few rigorous large-scale evaluations have explicitly 

tested these theories, leaving heterogeneity of impacts largely unexplained. 

 

 Theories of moderation and mediation can thus help to explain heterogeneity of program 

impacts.  Conversely, observed heterogeneity of program impacts can be used to test these 

theories. Thus knowing how sites vary in their program impacts creates an opportunity to learn 

about what works best and why; likewise, the power of a theory can be evaluated in terms of its 

capacity to account for observable heterogeneity of program impacts. 

 

The Importance of Multi-Site Trials 

 

 In the pages below, we share key ideas that emerged from the two conferences noted 

above. Specifically, we summarize what is already known about how to learn about and from 

variation in program impacts; and we describe the new knowledge that is required in order to 

launch an ambitious agenda for research on these topics. However, we first need to say a little 

about the multi-site RCT and its importance for this enterprise.  

 

 Multi-site trials are RCTs in which sample members are randomly assigned to a new 

program or a control group within each of a number of sites. Sometimes sites are comparatively 

few in number. For example the well-known Moving to Opportunity (MTO) experiment was 

conducted in five cities: Baltimore, Boston, Chicago, Los Angeles and New York. Within each 

city, program applicants from local public housing projects were randomly assigned to receive 

either: (a) a standard Section 8 housing voucher that could be used to rent private market housing 

(treatment one), (b) a limited Section 8 housing voucher that could be used to rent private market 

housing in neighborhoods with poverty rates below a specified level (treatment two) or (3) no 

housing voucher (control status, Katz, Liebman and Kling, 2000). A key aspect of heterogeneity 

in this study is variation in program impacts across its five sites (Brudick-Will et al., 2011). In 

contrast, the national Head Start Impact Study selected more than 350 over-subscribed Head 

Start centers and within each center, randomly assigned a small number of eligible program 

applicants to the program or a control group (US Department of Health and Human Services, 

2010). Despite the small sample sizes per site for this RCT, one can learn a great deal about 

heterogeneity of Head Start impact by studying its cross-site variation (Bloom et al., 2014).  
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 Although the methods of statistical analysis differ somewhat depending on the number of 

sites and participants per site, all multi-site trials can be regarded as “a fleet of randomized 

experiments”. Hence, they are uniquely suited to the study of impact heterogeneity. This is 

because sites often vary in interesting ways with respect to implementation of the program being 

tested and the kinds of participants being served. Moreover, the multi-site trial is prevalent if not 

ubiquitous. For example, in her survey of 175 RCTs conducted by IES since 1994, Spybrook 

(2013) found that more than two-thirds were multi-site trials. For these reasons, the present paper 

focuses on multi-site trials. However, many of the core ideas that it presents can be adapted to 

single-site trials and to single or multi-site quasi-experiments. 

  

Our Aims for This Paper 

 

 We begin by describing what can be learned from multi-site trials about heterogeneity of 

impacts. The idea here is to first detect, quantify, and describe impact heterogeneity without 

formulating or testing theories that might explain it. We thus focus first on methods for achieving 

the following analytic objectives:  

 

• estimating the average impact of a program across a population of persons or sites 

when the program’s impacts vary; 

• detecting variation in program impacts among persons within sites; 

• detecting and quantifying variation in average program impacts between sites; 

• estimating the average impact of a program at each site; 

• estimating the cross-site distribution of site-specific average impacts. 

 

 We next focus on how to learn from heterogeneity of impacts in order to achieve the 

following objectives: 

  

• posing and testing theories about why some individuals benefit more than others from 

a new program and why some program sites produce larger impacts than others (i.e. 

theories about impact moderation); 

• posing and testing theories about the mechanisms through which a program produces 

its impacts (i.e. theories about impact mediation). 

 

 In pursuing these aims, researchers often must confront the problem of non-compliance 

with random assignment noted earlier. For example, in MTO only 47 percent of the sample 

members who were randomized to the limited Section 8 housing voucher actually used it (Katz, 

Kling and Liebman, 2000). Likewise, in lottery-based studies of charter schools, some winners 

of the lottery for a given charter school do not enroll in that school and some losers of this lottery 

end up enrolling in that school or in some other charter school.  
 

 In studies characterized by such non-compliance, researchers have come to distinguish 

between two types of causal effects or program impacts. The first is the impact of assignment to 

a program, which is typically called the effect of intent-to-treat effect or ITT (e.g. Little and Yau, 

1998). The second is the impact of participating in a program for sample members who were 

induced by random assignment to participate. This is often called a Complier Average Causal 

Effect or CACE (Little and Yau, 1998) or a Local Average Treatment Effect or LATE (Angrist, 
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Imbens and Rubin, 1996). We shall use the term CACE. Knowledge about ITT and CACE are 

both important for advancing program theory, practice and policy. However, estimating a cross-

site mean and variance for the latter is more challenging and involves more assumptions than is 

the case for the former. Furthermore, more is known about how to study the former than the 

latter.  

 

 Part II of our paper considers how we can learn about variation in ITT impacts. Part III 

considers the problem of learning about variation in CACEs. Part IV considers the problem of 

posing and testing theories in order to learn from variation in impacts. 
 

Part II: 

 Learning About Variation in the Impacts of Program Assignment 

 

 To lay a conceptual and methodological foundation, we begin with the individual-level 

average and variance of ITT impacts within a single site. We then discuss how to use multi-site 

RCTs to study impact variation within and between sites.  

 

Studying ITT Impacts for a Single-Site RCT 

  

 We adopt the “potential outcomes” framework for causal inference, which is used widely 

in applied statistics.
3
  We set T=1 if a sample member is randomized to a new program (or 

treatment) and T=0 if he is randomized to a control group. Each participant has two potential 

outcomes: Y(1) if he is assigned to the program and Y(0) if he is assigned to the control group.
4
 

By definition, the causal effect of a program for a person is the difference between his two 

potential outcomes: 

 

 � ≡ �(1) − �(0).          (1) 

 

 It is not possible to calculate a program impact for an individual because we can observe 

only one of his two potential outcomes. If he is assigned to the program, we can observe Y(1) but 

not Y(0) and if he is assigned to the control group, we can observe Y(0) but not Y(1). We can 

however, estimate the average program impact for a population of individuals from data for an 

RCT. This is possible because random assignment ensures that each sample member’s potential 

outcomes are unrelated to assignment to the treatment or control group. Hence there is no 

“selection bias.” The population-average causal effect of intent to treat (����) is thus:
5
 

 

3
 Versions of this framework have been attributed to Neyman (1923), Roy (1951), Heckman (1979), Rubin (1974, 

1978), and Holland. (1986).  
4
 Specifying these two potential outcomes for each person assumes that they cannot be influenced by the outcomes 

or program assignment of others, which is known in the literature as the Stable Unit Treatment Value Assumption or 

SUTVA (Rubin, 1986). 
5
 Equation 2 assumes that scaling up the program to include all population members would not change the 

program’s benefit for each participant. This assumption could fail, for example, if the entire population of 

unemployed persons were assigned to an effective job training program. In this case, each program participant 

would be competing in the job market against all other participants who also obtained the program’s benefits, 

possibly reducing the labor-market advantage conferred by these benefits. This assumption is a consequence of 

SUTVA (note 4). 
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���� ≡ �[�(1)− �(0)] = �[�(1)]− �[�(0)]           (2) 

 

where “E” denotes an “expectation” or population average. In other words, the average causal 

effect of intent to treat for a population, ���� , equals the difference between the average outcome 

that would result if the entire population were assigned to the program, �[�(1)], and the average 

outcome that would result if the entire population were assigned to the control group, �[�(0)]. 
 

 Although we can estimate the average impact of assignment to a program for a single 

site, we cannot estimate the variance of these effects across individuals. To see this, note that, 

based on Equation 1,  

 

 �(1) = �(0) + �           (3) 

 

Hence, the variance of Y(1) is: 

 

 ���[�(1)] = ���[�(0)] + ���[�] + 2 ∙ ���[�(0),�]      (4) 

 

which implies that:  

 

 ���[�(1)]− ���[�(0)] = ���[�] + 2 ∙ ���[�(0),�]       (5) 

 

where Cov[Y(0),B] is the individual-level covariance between control group outcomes and 

program effects. Although we can estimate the two variances Var[Y(1)] and Var[Y(0)] from 

sample data, we cannot estimate Cov[Y(0),B] or Var(B). 

 

 Further investigation (see Bryk and Raudenbush, 1988 and Bloom, Raudenbush, Weiss 

and Porter, 2014) reveals that:  

 

• If a program group and control group have different individual-level outcome variances, 

we can conclude that program impacts vary across individuals.
6
  

 

• If a program group and control group do not have different individual-level outcome 

variances, we cannot conclude that program impacts do not vary across individuals.
7
  

 

• If the program group variance is smaller than the comparison group variance, we can 

conclude that it produces larger-than-average impacts for persons who would fare worse-

than-average without the program (i.e. program effects are compensatory).
8
  

 

6
 Equation 5 implies that the only way for a program-group outcome variance to differ from its control-group 

outcome variance is for program impacts to vary across individuals. 
7
 The expression Var(B)+2Cov[Y(0),B] can be near zero even if  the individual-level impact variance, Var(B), is 

positive This can occur when persons who would fare less well than average without the program benefit by more 

than average from it (i.e. when Cov[Y(0),B] is negative ). 
8
 Equation 5 implies that the program group outcome variance can be smaller  than the control-group outcome 

variance only if Cov[Y(0),B] is negative. 
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• If the program group variance is larger than the comparison group variance, we cannot 

conclude that the program produces larger-than-average impacts for persons who would 

fare better-than-average without the program.
9
 

 

 In summary then, a single-site RCT can provide full information about the average 

impact of program assignment at a single site and limited information about the heterogeneity of 

this impact across individuals at that site.  

 

Studying ITT Impacts across Multiple Sites 

 

 As noted earlier, a multi-site trial is fleet of independent RCTs, which makes it possible 

to estimate the impact of assignment to a new program at each site. In principle, this means that 

we can address a series of important questions about impact heterogeneity by comparing impact 

estimates across sites. For example, we can ask whether impacts vary across sites and how large 

this variation is; and whether sites serving high-risk persons produce effects that are larger or 

smaller than those produced by sites serving lower-risk persons. We can even envision 

displaying the cross-site distribution of impacts, making it possible to identify the most and least 

effective sites. We can achieve these goals by capitalizing on random assignment within each 

site without the need to impose strong assumptions.   

 

 In practice however, Spybrook’s (2013) review suggests that past multi-site trials have 

rarely pursued these questions. One possible explanation for this is that researchers regard site 

samples to be too small to draw strong conclusions about cross-site impact variation. Researchers 

may also be concerned about “capitalizing on chance” when testing the statistical significance of 

impact estimates for multiple sites. However, statistical advances over the past several decades 

make it possible to efficiently analyze impacts that vary across sites, producing credible 

summaries of evidence about site-specific impacts even when site samples are small. 

 

 In what follows, we consider how to conduct multi-site analyses of impact variation in a 

way that expands on our discussion of single site analyses. Recall that for single site studies we 

considered the average impact of a program, the variance of program impacts across individuals 

and the covariance between individual impacts and their “untreated counterfactual outcomes” 

(the outcomes they would experience if not assigned to the program). We now consider 

analogous site-level quantities: the cross-site average impact, the cross-site variance (or standard 

deviation) of impacts and the cross-site covariance between impacts and untreated counterfactual 

outcomes. 

 

 We shall see that the tasks of defining the parameters of interest in a study, designing the 

study, and analyzing data from the study become somewhat complex when we anticipate that 

program impacts vary within and across sites. We consider these issues first in the familiar case 

of studying the population-average impact.  

 

 

The Population-Average ITT Impact 

9
If program effects vary, the program group outcome variance can exceed the control group outcome variance even 

if Cov[Y(0),B] is zero. 
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 The problem of defining the population-average impact when impacts are 

heterogeneous. When program impacts vary across persons and/or sites, there are different ways 

to define the population-average impact. On the one hand, we might define the population of 

interest to be a population of sites. For example, we might consider the population of all local 

Head Start centers in the US to be the focus of our analysis and therefore might want to know the 

average impact for that population of sites, counting each site equally regardless its number of 

program-eligible children. 

 

 On the other hand, if we were interested in generalizing findings to the population of 

eligible Head Start children, we would want to address a different question: What is the average 

program impact in for the U.S. population of program-eligible children? Statisticians often define 

a parameter of interest in a study to be a “target of inference” or “estimand.” Ideally, researchers 

should be explicit about their estimands of interest before designing a study.  

 

 Suppose, that, prior to designing a study, we have information about the number of sites, 

call it 
*J , in the population of all sites of interest, and that we also have information about the 

number of eligible persons, call it jN in each site j, there being ∑
=

*

1

J

j

jN persons in the entire 

population. As in Equation 1 above, each person i in each site j possesses a potential outcome 

)1(ijY if assigned to the program and a second potential outcome )0(ijY  if assigned to the control 

group. Thus, we can define, for each person, the causal effect of assignment to the program 

(relative to the control) as  

 

 )0()1( ijijij YYB −= .         (6) 

 

The site-average causal effect is then  

 

 j

N

i

ijj NBB
j

/
1

∑
=

= .         (7) 

 

 If we wish to generalize to a population of sites, we can define our estimand of interest as 

the unweighted “mean of site means,” that is, 

 

 
*

1

*

J

B
J

j

j

unweighted

∑
==β  .        (8) 

 

In Equation 8, each site counts equally in contributing to the estimand, regardless of how many 

persons are located in that site. In contrast, if we wish to generalize to the population of persons, 

we can define our estimand as the average taken over all persons, that is 
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β       (9) 

 

If the impact of the program is invariant across all sites, or if the number of participants 

per site is constant, the unweighted average estimand in Equation 8 and the weighted average 

estimand in Equation 9 will be identical. But neither of these conditions seems plausible. Hence, 

our two estimands could be quite different, particularly if programs in sites that serve large 

populations of persons are more or less effective, on average, than are programs in sites with 

small populations.  

 

 The problem of designing a multi-site trial when impacts are heterogeneous. The 

choice of estimand will strongly influence the optimal design of a study. To see why, let’s 

suppose for simplicity that the cost of sampling children within sites is invariant across sites, the 

cost of studying program group members equals the cost of studying control group members, and 

the variance of the outcome within experimental groups does not vary between experimental 

groups or across sites.  

 

 If the estimand of interest is the unweighted mean of site means (Equation 8), it would be 

optimal first to draw a simple random sample of sites from the population of sites; then to draw a 

simple random sample of n persons within each site, and then to assign those persons with equal 

probability to the program or control group. This would be a perfectly balanced design (with 

2/n  persons in each experimental group from each site). 

 

 However, if the estimand of interest is the weighted mean (9), a good option would be to 

again draw a simple random sample of sites from the population of sites but then to set the 

sample size for each site to be proportional to the number of program-eligible persons located in 

the site.
10

  

 

 Many other design options are possible. One might over-sample certain sites, e.g., those 

that serve small but scientifically interesting sub-populations. And one might over-sample 

particular sub-populations within sites. Yet one might still define Equation 8 or, alternatively, 

Equation 9 as an estimand of interest.  

 

 Unfortunately, evaluators rarely have the luxury of implementing probability samples of 

sites or of persons within sites and instead select samples of convenience. Yet evaluators 

typically conceive the sites in their study to represent a larger universe of similar sites that might 

take up the program; and evaluators want their findings to apply not only to the specific persons 

in their sample but rather to a larger universe of similar persons who might benefit should the 

program be found effective. In this setting, care must still be taken during the design phase 

10
 Alternatively we could stratify sites by the size of their eligible population jN , sample sites with probability 

proportional to their size jN ,and then draw equal-size samples within each site. 
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regarding choice of the estimand. One might contemplate generalizing findings to a larger 

universe of sites and hence weighting the contribution of each site equally when defining the 

estimand of interest (as in Equation 8); or generalizing to a larger universe of persons 

represented by the persons in the sample, hence adopting a weighted average as the estimand 

(like Equation 9) and substituting the known site sample size jn for the desired site population 

size jN . In this way, each sampled person contributes equally to the overall mean impact. 

  

 The problem of estimating the mean impact in a multi-site trial when impacts are 

heterogeneous. Having carefully defined the estimand of interest and having designed the study 

accordingly, we now face the question of how to estimate the desired mean impact given the data 

that are collected. Now we must confront the fact the sample size jn per site might vary 

significantly from what the design intended. Moreover, the fraction of persons assigned to the 

program (as opposed to the control group) will typically vary from site to site even if the 

research design held this fraction constant across sites. The fraction assigned to the program is 

known in the statistical literature as a “propensity score” (Rosenbaum and Rubin, 1983). In a 

multi-site trial the propensity score can vary across sites by design or, more often, because of 

unobserved site differences. For example, in a lottery-based study of charter schools, a highly 

popular charter school might have many applicants per available seat. For this school, the 

propensity score – that is, the chance of winning its lottery – is low. A less popular charter school 

might have fewer applicants per seat and thus have a higher propensity score. If these propensity 

scores are correlated with charter school impacts – which seems possible—one must take special 

care to account for the correlation.  

 

 To see how these challenges play out in practice, we need some additional notation. 

Paralleling our discussion of potential outcomes for an individual, we define jU1 as the average 

outcome that would occur if the entire population of eligible persons in site j were assigned to 

the new program; and define jU0  as the average outcome that would occur if the entire 

population at site j were assigned to the program’s control group. The average impact of the new 

program at site j is thus jjj UUB 01 −= . If persons are randomly assigned to the program, we can 

estimate jU1 for site j without bias from the sample mean outcome (call it jY1  ) for its program 

group members. Similarly, we can estimate jU0 for site j from the sample mean outcome (call it 

jY0 ) for its control group members.  This resulting estimate of the average program impact for 

site j is a simple difference of means jjj YYB 01
ˆ −=  and its sampling variance (call it jV ) depends 

on the site’s sample size and propensity score. These simple facts enable us to evaluate the bias 

associated with common estimators of alternative estimands.  

 

 To keep the discussion simple, we now confine our attention to the case where the un-

weighted “mean of site means” defined by Equation 8 is the estimand of interest. The logic of 

our inquiry would remain the same had we chosen to focus on Equation 9. This logic entails 

clarifying the bias and precision of conventional methods when used to learn about the estimand 

of interest. 
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 The “site fixed effects” estimator. A common analytic strategy for estimating the 

average ITT effect in a multi-site trial is the site fixed-effects estimator. One writes down an 

standard regression model where the outcome is ijY , the key predictor is treatment group 

assignment ijT , and the between-site variation is removed by the inclusion of site fixed effects. 

We can write this model as 

 

 ijjijij eTY ++= αβ          (10) 

 

jα is a site-specific fixed intercept , and ije is a random error having zero mean, and, for 

simplicity, we will assume that ije has a constant variance 
2σ .

11
 The resulting estimator is 

readily shown to be a weighted average of site-specific impact estimates jjj YYB 01
ˆ −=  :  
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 where  

 

  ).1( jjjj TTnw −=  

 

Here jn  is the sample size for site j and jT is the propensity score (the proportion of sample 

members assigned to the program) in site j. Interestingly, the weight jw for site j is inversely 

proportional to the reciprocal of the  sampling variance of the site-specific estimate jB̂ .
12

 This 

estimator is optimal (it is unbiased and has minimum variance) when site-specific impacts are 

homogenous. 

 

 However, things change when site impacts are heterogeneous. Now the fixed effects 

estimator will be biased for the unweighted population mean of site means (Equation 8) 

whenever the “true” site-specific impact jB  is correlated with jw  (see Raudenbush, 2014). This 

implies that if the sample size jn or the propensity score jT is statistically associated with jB , we 

have a risk of bias.  

 

11
 Recall from our discussion of heterogeneity of impact within sites that we will often find that the within-site 

variance of program group and control group members will differ, but we ignore this complication here in order to 

focus on key issues. 

12
 The sampling variance is )]1(/[)|ˆ( 2

jjjjj TTnBBVar −=σ . 
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 Using simple averages. It is natural to think that we can greatly simplify this problem by 

using one of several straightforward averages. For the case at hand, in which we are generalizing 

to a population of sites, consider the very simple estimator:   
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This “unweighted” sample average is sure to be unbiased when we want to count all sites 

equally! The problem, however, is that it could be very imprecise because we give sites with 

very small samples equal importance to sites with very large samples.  

 

 In sum, in the case where we wish to generalize to a population of sites, the site fixed 

effects estimator (Equation 10) is unbiased and precise when site-specific impacts are 

homogeneous but potentially biased when they are heterogeneous. In contrast, the unweighted 

average (Equation 12) is always unbiased but potentially very imprecise when sample sizes vary 

substantially. 

 

 A simple random coefficient estimator. Having to choose between the site fixed effects 

estimator in Equation 11 and the unweighted site average in Equation 12 creates a forced choice 

of the kind that many statisticians find objectionable. Is there not a flexible alternative that puts 

our analysis on a continuum between these two extremes and is sensible across a range of cross-

site variation in impacts and sample sizes? The answer is a qualified “yes.” 

 

 To see how, consider a hierarchical linear model (Lindley and Smith, 1972; Dempster, 

Rubin, and Tsutakawa, 1981; Raudenbush and Bryk, 2002) or HLM, which specifies site impacts 

that vary randomly around a population grand mean (�) with a variance �2. If 
2τ were known for 

the population of sites and �� were known for each site, we would have another estimator with 

site weights equal to the reciprocal of the total variance of their site impact estimate (�2 + ��)-1
. 

We therefore would have an estimator having the same form as the fixed effects estimator but 

with site-specific weights: 
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When site-specific impacts are homogeneous ( 02 =τ ) this weight is the same as that for the 

fixed effects estimator (�� = 1�� = �����(1− ���)) in Equation 11, which is optimal for 

homogeneous impacts and heterogeneous site sample sizes. But if site impacts are highly 

heterogeneous (relative to their sampling variances), 1≈jw , corresponding to the unweighted 

average estimator in Equation 12, which is optimal in this case. In this way, incorporating the 

“heterogeneity parameter” 
2τ into our weights creates a continuum of estimators that lie between 

the two extremes posed by the site fixed effects estimator and the unweighted estimator. We can 

conjecture that, by putting us in a reasonable place on this continuum, the HLM estimator is 

superior to either of its two extreme alternatives in terms of root mean squared error.  
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 However, recall that our answer about the preceding dilemma was a “qualified” yes and 

there are two important qualifications. First, our reasoning in the previous paragraph was based 

on the assumption that
2τ for the population of sites and jV  for each site are known. The 

unknown part of �� is the within-site variance 
2σ , which can be estimated with considerable 

precision based on pooled data for a moderately large RCT. However precise estimation of 
2τ

depends on the number of sites in the RCT. If 
2τ is estimated imprecisely, we will not likely land 

on the optimal place on the continuum between the site fixed effects estimator and the 

unweighted estimator. However, we will not land outside this continuum, so it is possible that in 

many cases this estimator has acceptable properties.  

 

The second qualification is that, like the fixed effects estimator, the HLM estimator is 

biased when its weights are correlated across sites with true impacts. This bias will tend to be 

smaller than that for the fixed effects estimator, but neither bias vanishes as the number of sites 

increases. We anticipate that it will be possible to place a bound on potential bias in many 

applications by including information about the association between the weights jw and the true 

impacts jB  and even to correct for this bias; but this is a topic for future study.  

 

The Cross-Site Variance of ITT Impacts and the Correlation between Program Impacts 

and Control Group Means 

 

 Defining the Cross-site Variance. We’ve made the argument that, for multi-site trials, 

one should estimate the cross-site variance, or standard deviation, of mean program impacts as 

well as the cross-site mean. But how do we do this?  

 

 First, just as in the case of the overall average impact, we need to take care to define our 

estimand. An intuitively appealing definition of this cross-site variance is the simple average 

squared difference between site-specific impacts jB and the unweighted cross-site average 

impact β . This variance, which is the cross-site variance in site mean program impacts, can  be 

written as 

 

 
*

1

2

2

*

)(

J

B
J

j

j∑
=

−
=

β
τ .        (14) 

 

 However, we may also be interested in a weighted average  
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where β is now defined as the weighted mean in Equation 9.  It may seem counter-intuitive to 

define a variance as a weighted average of the difference between site-specific mean program 

effects and a population mean program effect. However, as shown in Appendix A, Equation 15 

can be very useful in enabling us to estimate the portion of the total variation in program impacts 

across individuals in a population that reflects the differences in mean impact of the sites in 

which they are located.  

 

 Estimating the Cross-Site Variance of ITT Impacts. Few studies that we have 

reviewed have attempted to estimate the cross-site variance of  ITT impacts, and we have not 

found methodological literature that provides guidance for how to estimate Equation 14 or 15 

from sample data. Clearly, the optimal method will depend on how the study is designed, just as 

in our discussion of estimating the mean ITT impact. However, we reason that a broad class of 

estimators will have the form 
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where jw is a weight for each site’s contribution to the variance estimate. Negative estimates will 

be set to zero. The idea here is that 
22 ]ˆˆ[)ˆˆ( ββ −+−=− jjjj BBBB  gives us, for each site, an 

unbiased estimate of the sampling variance )ˆ( jjj BBVarV −=  and the cross-site variance 

)(2 βτ −= jBVar . So we subtract the estimated sampling variance jV̂  from 
2)ˆˆ( β−jB  and call 

this difference the site-specific estimate of 
2τ . We then compute a weighted average of these 

site-specific estimates using a weight jw .  

 

 Suppose now that we have a convenience sample, yet we regard our sites as representing 

an interesting if undefined universe of similar sites and our variance estimand is the unweighted 

one (Equation 14). Then we’d be inclined to set 1=jw in computing the estimate defined by 

Equation 16. In contrast, suppose that again, we have a convenience sample, but we regard the 

persons in our study as representing a universe of similar persons who might experience the new 

program, and we want to generalize to that universe of persons. Then we might set jj nw = in 

calculating our estimate (Equation 16). 

 

 How reasonable are such approaches? Here we’ll consider the case of the unweighted 

estimand (Equation 14) and hence set 1=jw when calculating our estimate. This estimate would 

be “consistent,” that is, it will always converge to the correct value as the number of sites in the 

sample becomes ever larger. However, the unweighted approach may be very imprecise, 

particularly if small sites produce outlying estimates jj VB ˆ)ˆˆ( 2 −− β , because these outliers will 

be given equal weight to far more precise estimates coming from larger sites. This would be 

particularly problematic if the number of sites is modest. 
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 An alternative is a hierarchical linear model analysis based on maximum likelihood. Such 

an approach uses iteratively re-estimated least squares to obtain, at iteration m+1 
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where 2)()( )ˆ( −+= m

j

mm

j Vw τ -- see Appendix B. Here the weight is inversely proportional to the 

reciprocal of the square of the variance of the site-specific estimate jB̂ . This is optimal when we 

assume no correlation between the weight and site-specific impact estimates because it 

appropriately weights down outliers coming from small-sample sites. However, if the true cross-

site impact variance is large relative to site-specific estimation error, the HLM estimator will 

tend to converge with the unweighted estimator. We need to learn more about the bias-precision 

trade off that can arise in practice from this approach. 

  

 Estimating the cross-site covariance or correlation between treatment effects and 

control group mean outcomes. What is the cross-site correlation between program impacts and 

control group mean outcomes? This is another question that is rarely asked but potentially quite 

informative. If sites with high control group mean outcomes produce larger effects than do sites 

with low control group means (the correlation between these two quantities is positive), we can 

conclude that the program will tend to increase cross-site outcome inequality. However, if this 

correlation is negative, the program will tend to reduce outcome inequality across sites. The 

impact of this correlation on the overall distribution of outcomes across all children is described 

in Appendix A. It can be estimated without imposing strong theory or assumptions. Yet 

conventional methods do not, in general, provided an unbiased estimate, as is the case for the 

cross-site mean and variance of program effects. 

 

 Once again, selecting the estimand is important and we can define one that is unweighted 

or one that is weighted by jN . To see how we might estimate the covariance, suppose that we 

could actually compute the true mean impact (�) as well as the site-specific impact jB ; and 

suppose we also knew the true mean untreated counterfactual outcome (�0) for the population of 

sites as well as the true site-specific untreated oucome jU0 . Then, for each site, we could 

compute the product (�� − �)(�0� − �0) , which we could then average across sites. In practice 

we might substitute corresponding sample estimates to compute )ˆˆ)(ˆˆ( 00 µβ −− jj UB and then 

subtract the sampling error covariance, jĈ , to obtain a weighted average 
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where 0Bτ is the cross-site covariance between mean program impacts and mean counterfactual 

untreated outcomes.  Again, we have choices, for example we could set 1=jw  or jj nw = or 

instead we could use maximum likelihood estimation of a hierarchical linear model (although the 

latter is more complicated and beyond the scope of the present discussion). Thus, more needs to 

be learned about how these methods work in practice. 

  

 Studying site-specific impacts. Knowing the cross-site mean and variance of program 

impacts is very useful, but more refined questions also arise. For example, looking across sites, 

how large are the largest impacts and which sites produce them? How small are the smallest 

impacts and which sites produce them? In what fraction of sites is the impact negative? While 

such questions are rarely asked in practice, statistical methods exist for answering them. Here 

graphical tools are important to reflect the uncertainty about the answers obtained and to check 

the underlying assumptions of the analyses involved. 

 

 If we could observe the site-specific impact jB  for each site, we could display its cross-

site frequency distribution and determine for example, the 10
th

, 25
th

,  75
th

 or 90
th

 percentile 

values. The problem with doing so is that we cannot observe the true values of jB . To address 

this problem we might use our estimate, jB̂ . Unfortunately doing so can grossly exaggerate the 

amount of cross-site impact variation that exists and provide a highly misleading sense of the 

percentile distribution of true impacts. This problem arises because the cross-site distribution of 

conventional OLS impact estimate jB̂  reflects two sources of variation: (1) cross-site variation in 

true impacts and (2) cross-site variation in impact estimation error. This problem can also cause 

us to greatly exaggerate how effective or ineffective the program might be at the most and least 

effective sites. Furthermore the problem can cause us to misrepresent the rank order of impacts 

for different sites, particularly if sites vary markedly in their sample sizes. In this case, sites with 

the smallest samples would tend to have the largest sampling error and thus the most extremely 

large or small values of jB̂ , even if true values of jB vary little. 

 

 Perhaps the most popular method for addressing this problem is to compute, for each site, 

an “empirical Bayes,” estimator of the form 

 

 βλλ ˆ)1(ˆ*

jjjj BB −+=  .        (19) 

 

This empirical Bayes impact estimate, *

jB is a weighted average of the site-specific OLS impact 

estimate, jB̂ , and the overall mean impact estimate β̂ . The weight accorded the site-specific 

estimate is its reliability 
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Sites with large samples will tend to produce jB̂  values have a small sampling variance, jV , and 

thus, have high reliability. For those sites ���will receive a large weight. For small-sample sites 

with large jV , reliabilities will be smaller and our estimate of the true site impact will “shrink” 

toward the grand mean, β̂ . There is considerable reason to believe that these empirical Bayes 

“shrinkage estimators” will, on average, better predict true site-specific impacts under cross-

validation (see Morris, 1983; for a review).  

 

 A key problem here, however, is that the shrinkage estimator depends on knowing the 

true value of
2τ , the variance of the true impacts. In practice, 

2τ must be estimated from data. In 

studies with few sites or very small samples per site, the estimate of 
2τ can be quite imprecise 

and will tend to be biased toward zero. Imprecise estimates of 
2τ will give us imprecise estimates 

of the reliability (Equation 20), leading us to “shrink” site-specific estimates jB̂ too much or too 

little. How can we diagnose this problem for a particular data set? Rubin (1981) provides 

graphical tools for doing checking the sensitivity of inferences about site-specific impacts to 

uncertainty about 
2τ . 

 

The site-specific empirical Bayes estimators *

jB are, in a sense, optimal for each site, 

given reasonably large sample sizes of sites and participants.
13

 However Louis (1984) noted that 

a histogram of empirical Bayes estimators, will understate the variability of true impacts jB . For 

purposes of generating a histogram that approximates the distribution of these true impacts, the 

empirical Bayes approach will have “over-shrunk” the site-specific estimates, jB̂ . Therefore, if 

we wish to approximate the histogram, we can use “constrained” empirical Bayes estimators 

(Bloom, et al., 2014).  I 

 

Part III:  

Learning About Variation in the Impacts of Program Participation 

 

 So far, we have talked about the impact of random assignment of participants to a new 

program, known as an ITT effect.  If everyone assigned to the new program participates in it and 

if no one assigned to control group participates in the new program, we have an ideal situation 

known as “perfect compliance” with random assignment. Unfortunately, in large-scale field 

trials, perfect compliance rarely occurs. Instead, we have partial compliance caused by two forms 

of noncompliant behavior. First, some participants who are assigned to the program will fail to 

participate. For example, in the Moving to Opportunity Experiment (Kling, Liebman and Katz, 

2000), families living in public housing were assigned at random to receive a voucher that could 

13
 As the number of sites increases without bound, the estimator 

*

jB will produce, on average, the minimum mean 

squared error of estimation of the true impact jB for a specific site. 
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be used to pay rent in a low-poverty neighborhood. However, only 47 percent of the families 

who were assigned to receive the voucher actually used it. .  Second, participants assigned to the 

control group end up in the new program. For example, in studies of charter schools, lottery 

winners are invited to attend the school.  Lottery losers, who are often placed on a waiting list, 

may actually enroll in that charter school anyway or enroll in some other charter school. 

Whenever we have partial compliance, the ITT effect is not the same as the impact of 

participation in the program.  

 

 The ITT effect is typically of interest to policy: We’d like to know, for each site, the 

average impact of the program on the persons for whom it was intended – that is, those assigned 

to the program. But we’d also like to know  the impact of actually participating in the program. 

However for this second purpose, a problem of selection bias arises, even in the context of an 

RCT. This is because study participants (or their parents, counselors, or teachers) shape the 

decision about whether or not to comply with random assignment. To cope with this selection 

bias when estimating the impact of program participation, methodologists have widely adopted 

the method of instrumental variables (c.f. Angrist, Imbens and Rubin, 1996 and Heckman and 

Vytlacil, 1998). For this approach, random assignment is conceived as an instrumental variable 

(IV) that induces a subset of youth to participate, and we can estimate the average impact of 

participation on those so induced (the “compliers”) under several comparatively weak 

assumptions (Angrist, Imbens, and Rubin, 1996). 

  

 Let’s take a look at how the IV method works in a single-site study with homogeneous 

impacts. Next, we’ll see how the analysis becomes more complex – and more interesting – when 

we allow treatment effects to vary across participants within such a study.  We’ll then consider 

how to exploit a multi-site trial to estimate not only the average impact of program participation 

but also to learn about heterogeneity of these effects across sites. 

 

The IV Method in a Single-site Trial with Homogeneous Impacts 
 

 It is easy to understand the conventional IV method by considering a simple causal model 

as in Figure 1. We begin by assigning participants at random to the new program (T=1) or to the 

control group (T=0). We expect random assignment to influence program participation, defined 

as M=1 if a study subject participates in the new program and M=0 if not. The impact of random 

assignment Ton program participation M is denoted asγ , which is the difference between the 

probability of participating in the program if assigned to it and the probability of participating in 

the program if assigned to the control group. The impact of participating in the program on the 

outcome Y is denoted asδ . 

 

 Figure 1 is a standard path model except there is no arrow between T and Y. This is 

known as the “exclusion restriction” – we have excluded the direct causal path between T and M. 

This reflects a key assumption of the IV method: Any impact of assignment T on outcome Y 

works indirectly through program participation, M. In the language of path analysis, participation 

M “fully mediates” the ITT effect, that is, the effect of T on Y, which we call β . That means that 

the ITT effect is just the “indirect” effect of T on Y that operates through M, and is therefore  

 

 γδβ =           (21) 
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The beauty of Equation 21 is that we can estimate δ (the impact of program participation M on 

outcome Y) without ever using M to predict Y. That is important, because as mentioned above, a 

model that uses M to predict Y is subject to selection bias whenever pre-treatment personal 

characteristics that predict the decision to participate in the program also predict the outcome. 

Instead, IV uses a two-stage approach. We can estimate γ (the impact of T on M ) and β (the 

impact of T on Y) without bias because T is randomly assigned. We can then divide our estimate 

of � by our estimate of � to obtain an approximately unbiased (consistent) estimate of δ : 

 

 .0, >=== γ
γ
βδ

MonTofeffectITT

YonTofeffectITT
ionparticipatprogramofimpact  (22) 

 

A key assumption of Equation 22 is that assignment to the program must increase the probability 

of participation, that is 0>γ . This is easily checked and it would be rare to find an experiment 

in which assignment the program had little or no effect on participation, nor would such a case 

be of much interest. 

 

The IV method in a single-site trial with heterogeneous impacts.  

 

Unfortunately, the simplicity of the conventional IV model (Figure 1) depends on a very 

strong assumption: that all participants respond the same way to treatment assignment. Although 

this assumption is frequently invoked implicitly in IV analyses, there is good reason to expect 

that for many applications the assumption will be false. People may vary in their motivation to 

participate, and some may benefit more than others from participating.   

 

 To represent heterogeneity in response to treatment assignment, we can construct a 

person-specific path diagram as in Figure 2. Each participant has a unique causal effect of T on 

M denoted by Γ . We refer to Γ  as “compliance,” as it measures whether an individual’s value of 

M changes in response to assignment to T.  The population-average value of Γ is γ=Γ)(E . In the 

same spirit, the person-specific causal effect of M on Y is ∆ .  The average effect in the 

population is δ=∆)(E . The “total effect” of T on Y for our participant is the product of the two 

causal effects Γ and ∆  as shown in Figure 2. Defining this total effect for our participant as Β , 

we see then that ΓΔ=Β . The population average effect of T on Y is  
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     (23) 

 

The problem with Equation 23 is that the average effect of intent-to-treat, β , depends not 

only on the product of the two causal effects γδ  but also on ),( ∆ΓCov , the covariance between Γ  

and ∆ . This covariance term implies that the population average effect of treatment assignment 

will be larger than �� when people who comply with the program (and thus have positive values 

of Γ ) tend to benefit more than others from it (and thus have positive values of ∆ ).In contrast, if 

for some reason, persons who would benefit more than average from program participation were 
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less likely than average to participate, the average impact of program participation would be less 

than ��.  
     

 How can we then accomplish our aim, which is to estimate the average impact of 

program participation,δ  when the treatment effect is heterogeneous? One option is simply to 

assume as an approximation that 0),( =∆ΓCov , i.e. that there is no (or negligible) covariance 

between compliance Γ and effect ∆ . In this case, Equation 23 becomes equivalent to the 

conventional model in Equation 22, and we can identify the average treatment effect of M on Y 

(the “ATE”) as 0,/ ≠= γγβδ . However, the “no compliance-effect covariance” assumption may 

be implausible in many cases, particularly in cases where individuals have some knowledge of 

how much they will benefit from M (i.e., they have at least partial knowledge of their ∆ ), and if 

that knowledge influences their compliance with assignment to T (their Γ ) (Roy, 1951).  Thus, 

the no-compliance-effect covariance assumption will seem to apply either when (a) participants 

(or other agents such as students or physicians making assignments to M) have no foreknowledge 

of likely benefits from participation or (b) the benefits from participation are a constant, taking 

us back to the conventional model.  

 

 Rather than assuming no covariance between Γ and ∆ , Angrist, Imbens, and Rubin (1996) 

developed an alternative approach. If T and M are binary, the authors reasoned that there are four 

different kinds of people: compliers, never-takers, always-takers and defiers. Compliers are 

persons who would participate (M=1) if offered a new program (T=1) and not participate (M=0) 

if assigned to a control group (T=0). Thus for compliers, the impact on M of being assigned to 

the novel program is 101 =−=Γ . Never takers are persons who would fail to participate in the new 

program regardless of their treatment assignment. That means M=0 regardless of treatment 

assignment, so that their impact on M of treatment assignment is 000 =−=Γ . Always takers are 

persons who would always take up the program regardless of their treatment assignment, so M=1 

either way and for this group 011 =−=Γ . Defiers are persons who would refuse to take up M if 

assigned to the program (so M=0 if T=1) but who would participate if assigned not to (so M=1 if 

T=0). Thus, for defiers, 1−=Γ .  

 

We might assume that there are no defiers. This is known in the literature as the 

monotonicity assumption, meaning that being assigned to the program cannot reduce the 

likelihood of program participation, hence 0≥Γ (Angrist Imbens, and Rubin, 1996). Under this 

assumption, we have 
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Here CACEδ  is the causal effect of participation on persons for whom 1=Γ , the compliers. Hence 

the label “complier average causal effect.” One problem for the interpretation of this effect is that 

the magnitude of CACEδ  depends on who complies with treatment assignment, and this will 

depend on how effective the program is in inducing participation. A program director who is 

very skilled at encouraging participation in the program in one study may generate a different 
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CACEδ  than will a program director in another study who is less-skilled at doing so, even if the 

population average impact of program participation is the same for the two studies.  

 

 In sum, if the gain from program participation varies among participants (as in Figure 2), 

the population average total effect of being assigned to the treatment is no longer a simple 

product γδ , unless we invoke the rather strong assumption of no covariance between compliance 

and impact. However, in the case of binary M, we can invoke the monotonicity assumption, in 

which case CACEδδ = , the complier average causal effect. The monotonicity assumption is 

generally much weaker than the no-covariance assumption.  

 

Using Multi-site Trials to Learn about Variation in CACE 

 

 Our aim now is to characterize the distribution of CACE across sites in the same way that 

we did so for ITT effects. First, we’d like to obtain an estimate of the average CACE across all 

sites. Second, we’d like to know whether and to what extent the site-average CACE impact 

varies. Third, we’d like to know how large (and small) the CACE effects might be. And we’d 

like to know whether the impact of program participation is high or low for compliers who 

would fare poorly if assigned to the comparison group. This would tell us whether sites serving 

persons at the highest risk have the most (or the least) to gain from program participation. 

 

 Raudenbush, Reardon and Nomi (2012) introduced statistical methods for estimating the 

mean and the variance of the CACE across sites. Rather than repeating the details of how to 

conduct this analysis, we refer the interested reader to that article. However, we’d like here to 

emphasize a subtle but important point regarding the assumptions that must be met to justify the 

approach the authors describe. These assumptions depend upon how one defines the goals of the 

study. As is true for ITT, we need to define our estimands for CACE. 

 

 Recall that the conventional analysis of the ITT effect is a site-specific fixed effects 

model, and that this approach works well so long as the site-specific impacts are homogeneous. 

However, as soon as we allow for heterogeneous treatment effects, we have to make a decision 

about how to define our population average. Although many definitions are possible, we 

contrasted two: (a) we define the population as the universe of all sites and seek to weight each 

site’s true mean effect equally; or (b) we define the population as the universe of all persons 

from all sites and thus seek to weight each person’s true program effect equally. Which 

definition we choose will influence how we decide to estimate the average impact as well as the 

variance of the impacts. 

 

 The logic is similar for CACE. The conventional estimator is a two-stage least squares 

estimator with site-fixed effects, an approach that works well so long as the CACE is invariant 

across sites as displayed in Figure 1. As soon as CACE is heterogeneous, as in Figure 2, we have 

to decide how to define the population average – and also the variance of the CACE.  

 

 Defining and estimating the overall average CACE. Suppose we want to generalize to 

a population of sites and regard each site as equally representative of that population. So we want 

to estimate the unweighted true average CACE, that is 
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Here jδ is the CACE in site j and δ is the overall average CACE. To estimate δ , an intuitive 

approach is to first estimate the site-specific CACE as jjj γβδ ˆ/ˆˆ =  , where jγ is the compliance 

rate in site j and jγ̂ is a sample estimate. We could then compute an unweighted average of jδ̂
across all sample sites and then define this average as our estimate of δ . Unfortunately, we find 

that this would not work well in many of the multi-site data sets we have analyzed so far because 

there will typically be many sites having an insufficient sample size to obtain a stable estimate of 

jγ . This is particularly important for CACE because in small sites we may obtain by chance a 

very low rate of compliance with randomization , jγ̂ . When we use this quantity as a 

denominator to estimate jδ  for a site, we obtain an estimate with an extremely large magnitude 

than can seriously perturb the overall average.  

 

 As an alternative, we might begin with our unbiased estimate the unweighted average 

ITT as  
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Can we then divide this quantity by the estimated average compliance, γ̂ , to obtain an average 

CACE? It turns out that we can do so only with a strong assumption, as described by 

Raudenbush, Reardon, and Nomi (2012). Specifically, we have to assume “no covariance 

between site-mean compliance and site-mean impact.” We can see this by noting that Equation 

22 can be written as 
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 The presence of the covariance term in Equation 27 means that we cannot simply divide 

both sides by γ  to obtain the average impact of participating, that is δ -- unless we assume the 

covariance to be zero, a strong assumption, as Raudenbush et al. (2012) note. Such an 

assumption implies that the fraction of people who comply with treatment assignment in site j is 

uncorrelated with the impact of participating in that site. This assumption would be false if 

effectively managed sites are good at convincing people to participate and also at generating 

positive effects. 

 

 However, suppose instead that we want to generalize to a population of persons so that 

the  CACE of interest is the one that weights each site’s estimate by the population size 

(Equation 9); and that we regard each person in our study as equally representative of that 
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population, that is, the sample size jn is proportional to the site-specific population size jN . 

Corresponding to this, our estimand for the average CACE is  
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Note here that there are jjN γ compliers in site j and ∑
=

*

1

J

j

jjN γ compliers overall. So each site’s 

contributions to the overall CACE is weighted by the number of compliers in that site. If jn is 

proportional to the site-specific complier population size jN , we can substitute jn for jN in 

Equation 28. 

 

 In this scenario, we can define the overall CACE as γβδ /= without resorting to the 

strong assumption about no covariance between compliance and impact. To see this note that our 

estimate of the overall ITT effect β has an expected value of δγβ = : 
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 The first term in the middle line of Equation 29 is the individual-level complier 

population mean effect of program participation (�); the second term is the individual-level 

population mean compliance rate. It seems intuitive to want to estimate the average impact of the 

program for  the entire complier population  (Equation 29). And we can do so with 

comparatively mild assumptions. 

 

 Estimating cross-site variation in CACEs. Raudenbush, Nomi, and Reardon (2012) 

describe several methods for estimating the cross-site variance of CACEs. Tackling this problem 

would lead us into a technical discussion beyond the scope of the present paper. However, the 

key principles follow from the logic of the previous paragraphs: How we define the variance will 

be critical in shaping our approach to estimating it. We may define this variance as an average 

squared deviation in a population of persons or in a population of sites, or in some other way that 

reflects a specific sampling design, and this decision will guide the approach to estimation. 
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 Estimating the correlation between the site-specific CACE and the mean outcome 

for compliers in the control group. Recall that, in the case of the ITT effect, we were interested 

in whether sites that produce large ITT effects are those that serve participants who would fare 

badly – or well – in the absence of the new program. This correlation would tell us something 

about whether implementation of the program tends to decrease or increase equality of outcomes. 

Now we’d like to know whether sites that produce large values of CACE are those in which 

compliers would have done poorly – or well – in the absence of the program. We can also 

envision asking whether non-compliers – “always takers” and “never takers” do better or worse 

than compliers in the absence of the new program. This would tell us something about the kinds 

of participants who comply and thus benefit from the program. Answering these questions goes 

beyond the scope of the current paper but will likely be of great interest going forward. 

 

 Estimating Site-Specific CACE. A final topic for future research concerns how best to 

estimate site-specific CACEs along with their quantiles – e.g., 25
th

 and 75 percentiles. As 

mentioned, we might estimate site-specific ITT effects on the outcome and divide by the fraction 

of compliers, that is, compute jjj γβδ ˆ/ˆˆ = . However, we noted that these estimates will tend to be 

unstable in small samples. We believe that empirical Bayes shrinkage estimators, described 

above with respect to the ITT effect will also be useful for CACE; this is a topic of considerable 

interest for future research. 

 

 

Part IV:  

Learning From Variation in Program Impacts 

 

 So far we have discussed ways to study the cross-site distribution of program impacts. In 

so doing we have focused on the cross-site average impact, the cross-site variance of impacts, the 

cross-site association between impacts and control group outcomes and especially large or small 

site-specific impacts. Learning about this impact variation sets the stage for explaining it. The 

idea now is to propose and test theories about when and why a program works, that is to learn 

from impact variation in order to deepen our understanding of the causal forces at work and how 

best to manipulate them to improve program practice. 

 

Moderation 

 

Which types of persons benefit most from a program and in what kinds of sites does the 

program work best? These two important questions are about moderation of program effects. For 

example, we’d like to know whether a program works better for some types of persons than for 

others in order to target it efficiently or in order to undertake further study about why the 

program does not work for certain types of persons. We’d also like to know which program sites 

are most effective, possibly to spur intense investigation of practice in those sites or to frame 

general questions about why the program works when it does. 

 

When addressing questions about such person-level and site-level moderators it is 

important to recognize that they are almost always interdependent. Sites vary not only in the 

organizational conditions and practices that may be a key to program success but also in the 
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composition of their client population. Hence, claims about best practice at the site level may be 

misguided because especially effective sites may over-represent persons who are most likely to 

benefit from the program being evaluated.  

 

In what follows, we define moderators of a program’s impacts to be any characteristics of 

its clients or sites that: (a) facilitate or inhibit the program’s effectiveness and (b) cannot be 

influenced by the program. 

 

 Person-level moderators. Evaluators commonly ask whether a program works better for 

boys than for girls or for youth from high- versus low-income families, or for high- versus low-

achieving students, or for persons of varying ethnicities. These questions are often addressed 

through exploratory analyses conducted after average program effects have been estimated. 

While such auxiliary analyses can enhance understanding, there are problems with this 

frequently ad hoc, post hoc approach. 

 

 First, some subgroup findings may have limited relevance for policy or practice. For 

example, knowing that boys or ethnic minorities benefit most from a program might motivate 

further inquiry into why the program works for some clients but not for others, and that is a good 

thing. However this knowledge does not necessarily imply that the program should make special 

efforts to target those subgroups. 

 

 Second, a search for subgroup impact variation can be stymied by the sheer number of 

subgroups to be examined. For example, the potentially large number of statistical tests of 

significant subgroup impact differences increases the likelihood of capitalizing on sample-

specific differences that arise by chance and are therefore not replicable. Moreover, many 

subgroups are confounded with each other. For example: ethnic minorities disproportionately 

comprise low income persons and boys have higher risk than girls for certain behavioral 

difficulties. Making sense of a large number of findings for such overlapping subgroups can be 

quite difficult.  

 

 Third, subgroup membership may vary substantially across sites and thus be confounded 

with geographic or ecological features of sites like their urbanicity, neighborhood disadvantage, 

or school quality. These site-level differences may be the drivers of variation in program impacts 

which could be mistakenly attributed to differences in person-level risk factors. Conversely, 

person-level risks factors may be the drivers of variation in program impacts which could be 

mistakenly attributed to differences in site features.  

 

 All of these concerns cry out for a priori specification of a theory about who stands to 

benefit from a given program and why. Suppose, for example, that a program aims to increase 

high-school graduation rates. It cannot appreciably increase graduation rates for students who are  

virtually certain to graduate without the program. In addition, there may be some students whose 

skills or prior grades are so low that the program cannot help them to graduate.  

 

We now have plenty of evidence about which kinds of kids are most likely to drop out of 

school (Rumberger, 1995), so that one can envision developing a model which predicts the 

probability of dropping out in the absence of treatment. The evaluator might then stratify his 

29 

 



sample based on this predicted probability or “prognostic score” and test for cross-strata impact 

differences.  

 

 Stratifying on a prognostic score has several major advantages. First, a prognostic score 

summarizes the predictive information in many different baseline characteristics, thereby greatly 

reducing the number of subgroup tests to be conducted. Second, if program impacts depend 

strongly on a prognostic score, we confront interesting questions for policy and practice. One 

might envision for example, targeting resources to persons with the greatest probability of 

benefitting; or, in some other way, differentiating program practice with respect to subgroups 

with different prognostic scores. Third, stratifying on a prognostic score might provide a more 

realistic assessment of the impact of the program than that provided by an estimate of its overall 

average effect. A school drop-out prevention program can reduce drop outs only for students 

who at some risk of dropping out. Suppose that at-risk students comprise 50% of one’s sample. 

In that case, the average program effect on dropping out would be no more than half the size of 

the effect of the program on persons who could benefit from it. 

 

 We also can augment a prognostic score analysis in ways that further our understanding 

of impact variation. For example, with program group data we could estimate a model that 

predicts post-program outcomes using individual baseline characteristics suggested by prior 

theory. Given randomization, the coefficients of this model for the program group should apply 

equally well to the control group, had they been assigned to the program. Thus we can apply 

estimates of those coefficients to the baseline characteristics of control group members to predict 

how they would have fared with access to the program. We could then use the same logic to 

obtain a prognostic score for how each program group member would have fared without access 

to the program. In this way, we can estimate a pair of prognostic scores for each sample member 

and stratify them based on their score pairs. By examining how program impacts vary across 

these strata within sites that represent both strata (described below), we can efficiently 

summarize evidence about person-level moderators.
14

 

 

 Site-level moderators. Knowledge about site-level moderators is potentially of great 

importance for developing program theory, policy and practice. For example, we need to 

understand what organizational conditions must be in place if a new program is to be successful. 

These conditions might include the availability of resources like staff skills and knowledge, the 

prevailing organizational climate in sites, or local ecological conditions such as neighborhood 

safety and unemployment rates.  

 

 Hence, just as we wish to estimate program impacts for subgroups of persons, we will 

want to estimate program impacts for subgroups of sites. Once again problems arise from the fact 

that there are many ways to define subgroups and thus there are many moderators to consider. 

But now the problem of “many moderators” is even more acute because there will always be far 

fewer sites per site-level subgroup than there are persons per person-level subgroup. Hence, there 

will be much less precision for estimating impact differences across site-level subgroups than for 

14
 When estimating a predictive model based on data for one of two groups and using it to predict outcomes for both 

groups, we must take care to avoid the problem of “over-fitting” the model to the group for which it was estimated. 

See Abadie et. al. (2014) for a discussion of this problem and ways to avoid it.  
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estimating impact differences across person-level subgroups.
15

 Consequently, the need for a 

priori theory to reduce the number of site-level moderators is even stronger than it is for person-

level moderators.  

 

 Double stratification. As noted earlier, a major problem that arises when studying 

program moderators is that site-level and person-level moderators are often confounded with 

each other. For example, sites with favorable organizational conditions might serve 

comparatively advantaged clients. Thus, what appears to be the influence on program effects of a 

site-level moderator might actually be the influence of person-level moderators or vice versa. To 

address this problem, we could use a “double stratification” strategy. For example, sample 

members might be stratified into two subgroups – persons at high risk of failure versus all others 

– according to their person-level prognostic scores; and sites might be categorized according to a 

specific site-level moderator or several such moderators (e.g. sites with high unemployment rates 

versus all others and/or sites with high resource levels versus all others). It is then possible to 

split each site’s sample into four groups: a high-risk program group and a high-risk control 

group; and a low-risk program group and a low-risk control group. In this case, some sites may 

have empty cells. Specifically, some sites have no “low-risk” treatment group members or no 

low-risk control group members or both. However, for all sites that have both high- and low-risk 

treatment and control group members, we can compare program impacts on high- and low-risk 

students controlling for a site-level moderator or set of moderators. Likewise, we can compare 

program impacts across values of site-level moderators controlling for participant risk. Different 

versions of this strategy are possible, depending on one’s sample structure.  

 

Mediation 

 

 Why does a new program work – or fail to work? Innovative programs are based on 

theories about how program operations generate short term changes that, if sustained, produce 

long-term benefits. The short-term changes are called mediators. Mediators include shifts in 

organizational processes such as improved instruction or more effective staff collaboration. Such 

improved processes are hypothesized to produce changes in mediators measured at the level of 

the person, including, for example, young people’s attitudes, behaviors, or skills that promote 

favorable long-term outcomes such as educational attainment, employment, earnings, or 

effective parenting. We therefore define mediators of program effects to be those aspects of 

program implementation, staff practice, and short-term changes in participants’ knowledge, 

skills, attitudes or behavior that are (a) outcomes of random assignment; and (b) predictors of 

participants’ long-term success. These are often regarded as the mechanisms through which 

programs produce long-term benefits.   

 

 Program sites that effectively generate relevant mediator values will, in theory, produce 

favorable impacts on participants’ outcomes. So heterogeneity of program impacts on program 

mediators can, in principle, explain heterogeneity of program impacts on participants’ outcomes. 

Nonetheless, although most programs are founded on a theory (which is implicit more often than 

it is explicit), few rigorous large-scale evaluations have systematically tested these theories. 

 

15
 This assumes that we are using a site-level random-coefficients model to estimate and test impact differences 

across site-level strata.  
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 If a program fails to produce long-term benefits, it may be because it failed to affect key 

mediators. For example, teachers who participated in a new professional development program 

may not have improved their instruction, so that their students did not become more engaged in 

school, hence no change in educational attainment ensued. Alternatively, the program may have 

influenced its mediators as expected, but the hypothesized relationship between the program’s 

mediators and outcomes failed to emerge. Understanding the source of program failure is one 

key way to learn how to develop better programs. 

 

 In other cases, the program may have produced positive long-term effects, but not 

entirely through the expected mediational processes. Understanding which mediators are crucial 

is important for designing new programs and for evaluating whether a new implementation of a 

program is achieving its short term goals. 

 

 Methodological challenges. Analysis of mediational processes is popular in social 

science and program evaluation. However, drawing valid causal inferences about mediation is 

very challenging. To see why, consider a study in which teachers are assigned at random to a 

professional development program with the aim of increasing instructional quality and student 

outcomes.  Suppose that, on average, the program is successful in boosting student achievement. 

One would like to know whether the gains in student achievement are explained – or “mediated” 

-- by measured increases in the quality of instruction. The mediational analysis would first ask 

whether the program boosted instructional quality. If teachers are assigned at random to the 

program, this part of the analysis is “protected” by randomization; the mean difference between 

instructional quality in the program group and the control group is an unbiased estimate of the 

causal effect of the program on instructional quality. Next, one seeks to know whether 

instructional quality affects student achievement. Establishing this causal link is especially 

challenging however, because teachers are not assigned at random to instructional quality. It will 

typically be the case, for example, that teachers’ pre-treatment characteristics (experience, prior 

education, commitment etc.) predict instructional quality.  Such pre-treatment confounding can 

produce bias when studying the impact of instructional quality on youth outcomes.  

 

 A second problem arises when the impact of a mediator on the outcome has a different 

effect for program group members than for control group members. If this is the case, 

membership in the program group or control group moderates the causal effect of the mediator 

on the outcome. Conventional methods of path analysis thus do not work (Holland, 1988; Robins 

and Greenland, 1992; Pearl, 2001). Presenters at the two recent national conferences described in 

the introduction of this article described three evolving statistical strategies for coping with these 

methodological challenges. 

 

 Multi-site multi-mediator instrumental variables analysis. Sean Reardon presented at 

the two conferences an approach that exploits site-to-site variation in the impact of a program on 

mediators. The rationale for this approach is quite intuitive. If M is a mediator and Y is an 

outcome of interest, we would expect to see a large impact of a program on Y in sites where the 

program strongly affects M. If we fail to see such effects, we have evidence against the 

mediation theory. If we do see effects, we have evidence of possible mediation. This idea 

extends nicely to the case of two mediators, call them 1M  and 2M . Suppose we see large effects 

of random assignment to the program on Y in sites where there are large effects of random 
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assignment to the program on 1M  but not in sites where there are large effects of random 

assignment to the program on 2M . Then we’d be inclined to infer that 1M  is a more important 

mediator than is 2M . This intuition is the basis for Bloom et. al.’s (2003) study of mediators in a 

series of large-scale multi-site welfare-to-work experiments. 

 

 Liebman, Katz, and Kling (2007) applied this approach to the Moving to Opportunity 

Study (MTO) described earlier. As noted, MTO randomly assigned eligible public housing 

residents in five cities to receive a standard Section 8 housing voucher, a Section 8 housing 

voucher that could only be used in neighborhoods with poverty levels below a specified level, or 

to a control group that did not receive a voucher. A key hypothesized mediator of MTO was 

neighborhood poverty. The researchers reasoned that the opportunity to move would reduce 

neighborhood poverty; and available theory suggests that neighborhood poverty undermines the 

wellbeing of parents and children. Sites in which assignment to a voucher produced not only a 

high level of voucher use but also a reduction in neighborhood poverty were the sites that tended 

to produce large effects on outcomes, so the authors concluded that voucher use and 

neighborhood poverty were mediators of the impact of program assignment. 

 

 Reardon and Raudenbush (2013) derived the assumptions that must be met in order to 

infer that a specified mediator has a causal effect on a specified outcome. These assumptions are 

closely related to the assumptions we described earlier when the aim was to identify the impact 

of participating in a new program (CACE or LATE). Indeed, program participation can be 

regarded as a mediator of the effect of program assignment, as described in Figure 2. In that 

figure, we see that assignment to the program increases the probability of participating in it; and 

participating in the program influences the outcome. As described earlier, a key assumption is 

that there is no “direct effect” of random assignment on the outcome (no arrow between random 

assignment and the outcome). The idea here is that random assignment can affect the outcome 

only by inducing program participation. Recall that treatment assignment T is an instrumental 

variable that induces a change in the causal variable M which in turn, causes a change in Y.  

 

 The multi-site, multi-mediator model extends this basic idea to the case of two or more 

mediators, as shown in Figure 3. Now our instrumental variable T induces a shift in two 

mediators, 1M  and 2M  and each of these, by hypothesis, influences the outcome Y. Readers 

familiar with instrumental variable methods will immediately raise a question. We now have one 

instrument and two causal variables, meaning that we will end up with one equation and two 

unknowns. How can this possibly work? Here the beauty of the multi-site design comes into 

play. We can regard the treatment assignment indicator in each site as a separate instrumental 

variable. Thus, if there are J sites with a treatment group and control group for each site, we have 

J instruments, enabling us to identify the impact of our two or more mediators on the outcome 

under several important assumptions defined by Reardon and Raudenbush (2013).  

 

 We can clearly recognize these assumptions, when we represent Figure 3 as a regression 

model. Let’s call jB the ITT effect in site j . Suppose that this effect works entirely through two 

mediators, 
1M  and 

2M . The impact of T on 
1M  in site j is j1γ and the impact of T on 

2M  in site 

j is j2γ . In terms of path analysis as shown in Figure 3, jB is the “total effect” of T on Y in site j 
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and it works strictly through indirect effects on the two mediators. Hence, we can express the 

path model as 
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Here 1δ  is the overall average impact of 1M  on Y controlling for 2M ,  2δ  is the overall average 

impact of 2M  on Y controlling for 1M .  Equation 30 is a simple regression model where the 

outcome jB is the ITT effect on Y, and the predictors are j1γ  (the ITT effect on M1) and j2γ (the 

ITT effect on M2). The beauty of this set up is that we can estimate all three ITT effects without 

bias based simply on the random assignment of participants to T.  So we do not have to worry 

about the possible pre-treatment confounding that would otherwise arise from the fact that 

participants are non-randomly selected into values of the mediators. However, this gift comes at 

the price of other assumptions: 

  

1. We are assuming that there is no direct effect of T on Y (the exclusion restriction). 

This means that there are no unobserved mediators. That’s why there is no intercept 

in Equation 30. 

 

2. To regard Equation 30 as a regression model with identifiable parameters, there must 

be no bias associated with the error term )()( 222111 δδγδδγ −+−= jjjjje . This 

requires us to make assumptions similar to that described earlier in the case of 

studying the impact of program participation. Specifically, we can assume that the 

impact of T on each mediator is not related to the impact of either mediator on the 

outcome; or, we have to define the impacts jj 21 ,δδ  as “Complier Average Causal 

Effects” (CACEs). This definition will apply when we assume “monotonicity,” that 

is, assignment to the program cannot  reduce the value of either mediator. Reardon 

and Raudenbush describe these assumptions in detail. 

 

3. There must be a non-zero impact of T on each mediator in one or more sites.  

 

4. The impact of T on at least one of the two mediators must vary from site to site and 

the impact of T on M1 must not be too highly correlated with the impact of T on M2. 

 

5. The mediators must operate “in parallel,” meaning that one mediator is not a cause of 

the other. If this assumption fails, we need a sequence of regression equations to 

represent a sequential rather than parallel mediation process, and the assumptions 

become stronger. 

 

We can readily check assumptions (3) and (4) against the observed data, so these do not pose a 

strong challenge. Assumption 5 is based on program theory. The other assumptions, however, 

are quite strong and cannot be checked against the data.  
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 Reardon, Unlu, Zhu and Bloom (2014) discuss conditions under which failures of these 

assumptions are most likely to cause bias in the case of a single mediator. They also provide a 

bias correction that is applicable when assumption (2) fails and the goal is to estimate a single 

mediator effect. We anticipate future work that will extend these innovations to the case of two 

or more mediators. 

 

 We can conclude that the multi-site, multi-mediator instrumental variable method opens 

up interesting new ways to exploit cross-site heterogeneity in order to draw conclusions about 

the impact of mediators on outcomes. However, this is a new method and we need to learn more 

about how failure of its assumptions influences its results. 

 

 Principal Stratification. The method of principal stratification (Frangakis and Rubin, 

2002) can be used to estimate program impacts for endogenous subgroups of sample members 

that are defined in terms of post-random-assignment potential outcomes, like dropping out of 

school if randomized to a study’s control group or being exposed in school to “world of work 

activities” if randomized to a study’s treatment group. One goal of principal stratification applied 

to the analysis of mediation is to estimate program impacts on persons whose mediator values 

are not affected by program assignment. Program impacts for such persons  are “direct effects” 

because they operate independently of the mediator or mediators of interest. The existence of a 

program impact on an outcome for persons who do not experience a program impact on a 

hypothesized mediator refutes the claim that the program’s impact is generated entirely through 

that mediator.   

 

The idea here is  to stratify one’s sample based on “potential mediator values” and to 

compare estimated program impacts for selected strata.  Frangakis and Rubin (2002) label these 

strata as “principal strata.”  Two sample members belong to the same principal stratum if their 

pair of potential values for a given mediator is the same. In other words, they belong to the same 

principal stratum if the value of their mediator under assignment to a program is the same and if 

the value of their mediator under assignment to control status is the same. Previously we 

reasoned that if treatment assignment had no impact on program participation (a potential 

mediator), it could have no impact on the outcome and we called this the “exclusion restriction.” 

When adapting principal stratification to study mediation, we relax this restriction.    

 

 To motivate this idea, consider a study in which teachers are randomly assigned to a new 

professional development program (T=1) or to a control condition (T=0) with the aim of 

improving student test scores, Y. Our mediator of interest is instructional quality (M=1 if high 

and M=0 if not high) and our outcome of interest (Y) is student test scores. Suppose we knew in 

advance: (a) how each teacher’s instructional quality would respond if he were assigned to the 

program and (b) how each teacher’s instructional quality would respond if he were assigned to 

the control group. This is the pair of potential mediator values for each teacher. If we stratified 

teachers so that all teachers in the same stratum had the same pair of potential mediator values, 

we could estimate the program impact on student achievement for each stratum using random 

assignment of stratum members to the program or control group. We’d be interested in knowing 

whether the program produced an appreciable impact in strata for which the two potential 

mediator values were the same – for example if instructional quality was low under assignment 
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to the program and under assignment to the control group. If this result were observed it would 

contradict our theory of mediation through instructional quality.  

 

 The problem of course, is that we cannot observe the two potential mediator values for a 

teacher, so his principal stratum membership is unknown. However, as presented at the two 

conferences by Lindsay Page, it is possible in some important cases to use baseline and follow-

up data for sample members to estimate a model that predicts their two potential mediator values 

and thereby predicts their principal stratum membership. For further information about this 

approach, see the article by Page et.al, (under review) in the present volume. .. 

 

 Note however, that the use of principal stratification for mediation analysis contrasts 

sharply with the use of multi-site instrumental variables analysis for this purpose. As noted, 

instrumental variables analysis uses the “exclusion restriction,” (that program assignment only 

works through specified mediators and thus has no remaining “direct effect”) to estimate the 

indirect effects of program assignment as they operate through the specified mediators. In 

contrast, the central use of principal stratification analysis for studying mediation is to estimate 

direct effects within strata for which there can be no indirect effects. Thus principal stratification 

might be regarded as a strategy for falsifying a mediation theory rather than a strategy for 

estimating a mediation process.  

 

 Sequential randomization. A third innovative strategy for mediation analysis, described 

by Guanglei Hong at the Chicago conference, conceives of the mediation process as a sequence 

of randomized experiments (Robins and Greenland, 1992; Pearl, 2001). Consider how this works 

in the case of a single binary mediator, where M=1 if the mediator value is favorable and M=0 if 

it is not favorable. The first experiment is the conventional one: We assign participants at 

random to a new program (T=1) or to its control group (T=0). The second experiment is 

hypothetical: program group members are assigned at random to the favorable value of the 

mediator with some probability. Control group members are also randomly assigned to the 

favorable mediator value, but with a different probability. If we knew these two probabilities, we 

could make the needed causal inferences (Imai, Keele, Yamamoto, 2010). The empirical 

challenge is to estimate these probabilities, which may depend on baseline characteristics of 

sample members and the study setting.  

 

 Let’s call the mediator value to which a program-group member is assigned M(1) and the 

mediator value to which a control-group member is assigned M(0). In principal stratification, 

these two potential mediator values are treated as fixed characteristics of each sample member, 

that depend on his background and the study setting. For analyses based on sequential 

ignorability, the values of M(1) and M(0) are treated as stochastic. The probability that M(1)=1 

depends on a participant’s past, the current situation and whether he is randomly assigned to the 

program group or control group. However, given this probability, the actual value of M(1) for a 

given sample member depends only on chance. Under sequential randomization, an effective 

program is seen as increasing the chance of receiving a favorable mediator value.  

 

 Recall that principal stratification groups sample members in terms of their predicted pair 

of potential mediator values, M(1) and M(0), based on their background characteristics and 

future outcomes. In contrast, under the assumption of sequential randomization or sequential 
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ignorability, we seek to group sample members based on their pair of probabilities of 

experiencing a favorable mediator value under assignment to the program group and under 

assignment to the control group. We denote these probabilities as: 

 

 Pr[M(1)=1|X] is the probability that a sample member will receive a favorable mediator  

 value if assigned to the program, given his background characteristics (X). 

 

 Pr[M(0)=1|X] is the probability that a sample member will receive a favorable mediator  

 value if assigned to the control group, given his background characteristics  (X). 

 

 Under the program theory, we expect Pr[M(1)=1|X] > Pr[M(0)=1|X]. That is, being 

assigned to the program should increase the probability of receiving a favorable mediator value. 

However assignment to the program might reduce this probability for some types of sample 

members. 

 

 If assigned to the program (T=1), a sample member will, in effect, randomly receive a 

mediator value �(1). Thus her outcome will be Y[1,M(1)].  If assigned to the control group, the 

sample member will randomly receive a mediator value �(0). Thus her outcome will be 

Y[0,M(0)].  We can now define the “total effect” of random assignment to the program on the 

outcome for a specific sample member as: 

 

 Total Effect: B=Y[1,M(1)] - Y[0,M(0)].     (31) 

 

To define mediation, proponents of this approach ask how the sample member would have fared 

if she were assigned to the program but, instead of receiving the mediator value that she would 

receive if assigned to the program, M(1), she received the mediator value that she would have 

received if assigned to the control group, M(0).  Her direct causal effect of assignment to the 

program (the part of the program assignment effect that is not produced through the mediator) is 

thus,  

 

 Direct Effect = Y[1,M(0)] - Y[0,M(0)].      (32) 

 

Note that here the mediator value is held constant at M(0), and we ask how the outcome changes 

only as a function of assignment to the program or control group. We can reason that if the total 

effect is large and positive and the direct effect is much smaller, the change in the mediator 

induced by program assignment is contributing substantially to the total impact. In contrast, if the 

direct effect is equal to the total effect, we can conclude that the hypothesized mediator played 

no role in transmitting the program effect. 

 

 This reasoning enables one to decompose the total program effect on samples members’ 

outcomes into an indirect effect and a direct effect by subtracting and adding the quantity 

Y[1,M(0)] from the total effect, such that: 

 

 Total Effect: B=Y[1,M(1)] - Y[0,M(0)]  

 

                                    = Y[1,M(1)] - Y[1,M(0)]              (Indirect effect)     (33) 
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                                                        + Y[1,M(0)] -Y[0,M(0)] .             (Direct effect) 

 

From Equation 33 we can see that: (a) the indirect effect is the causal effect on the outcome of 

changing the mediator value without changing program assignment and (b) the direct effect is the 

causal effect of changing program assignment without changing the mediator value. The relative 

magnitudes of these two component effects indicate the degree to which the program effect was 

“transmitted” by the hypothesized mediator. 

 

 The term that is added and subtracted in Equation 33, Y[1,M(0)], represents a counter-

factual quantity that cannot be observed, because we cannot know what the mediator value for 

someone assigned to a program group would be if instead he were assigned to the control group. 

The key assumption used to identify this quantity (sequential ignorability) is that once sample 

members are stratified based on their observable baseline characteristics (X) and their program or 

control group membership (T), the probability of a favorable mediator value is the same for all 

program group members in a stratum and the same for all control group members in the stratum. 

These probabilities can be estimated from sample data. 

 

 One difficulty with this approach is stratifying sample members on a potentially long list 

of baseline characteristics (X). To deal with this issue, one can use a propensity score 

(Rosenbaum and Rubin, 1983) because stratifying sample members on a propensity score can 

balance them on all variables used to predict the propensity score, at least in large samples. So 

this method proceeds as follows. 

 

 First, use the control group’s data on X to predict the probability of receiving a favorable 

mediator value under the control condition, Pr[M(0)=1|T=0,X]. Logistic regression analysis can 

be used for this purpose, producing an estimated coefficient for each predictor. These 

coefficients can then be applied to the background characteristics of program group members to 

estimate their probability of a favorable mediator value if assigned to control status, 

Pr[M(0)=1|T=1,X], which is a crucial counter-factual quantity. This procedure works in studies 

that randomly assign people to T because, in those studies, potential mediator values under 

program or control group assignment are unrelated to treatment assignment: 

 

 Pr[M(0)=1|T=0,X]=Pr[M(0)=1|T=1,X]= Pr[M(0)=1|X].   (34) 

 

 Similarly, we can use the program group’s data to predict the probability of receiving a 

favorable mediator value if assigned to the program Pr[M(1)=1|T=1,X], yielding a second set of 

estimated coefficients. We can then apply those coefficient estimates to the background 

characteristics of control group members to estimate Pr[M(1)=1|T=0,X]. Using these two sets of 

estimated coefficients, we can generate, for every sample member, the predicted probability of a 

favorable mediator value under assignment to treatment or control status. 

  

But given this information, how do we carry out the mediation analysis? This is a topic of 

active research among statisticians, and space prohibits us from describing the varied approaches 

that have been proposed to date. Suffice it to say that there seem to be three major approaches. 

One approach uses multiple imputation (Imai, Keele, Yamamoto, 2010) to generate predictions 

of how the program group in each stratum would have fared if it had the distribution of mediator 
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values observed for control group members from that stratum. A second approach develops a 

series of regression models to estimate direct and indirect effects (VanderWeele, 2015), which in 

some ways is akin to path analysis.  A third, non-parametric approach uses weighting (Hong, 

2015) to produce three groups: (a) the control group, (b) the original program group, and (c) a re-

weighted program group that represents how the program group would have fared had it received 

the distribution of mediator values exhibited by the control group for the same stratum.  

 

 Comparing approaches to mediational analysis. The preceding approaches for 

studying mediation of program impacts – multi-site instrumental variables, principal 

stratification and the approximation of sequential randomization – have different strengths and 

weaknesses. The first approach exploits the availability of multi-site RCTs to create a series of 

valid instruments and does not rely on pre-treatment covariates to remove selection bias. 

However, in order to produce unbiased (or consistent) estimates of mediator effects, this 

approach requires that all relevant mediators be observed and accounted for. Thus it is 

potentially subject to “omitted mediator bias.” In contrast, the approximation of sequential 

randomization does not assume that all mediators are measured and modelled. Rather, like 

standard path analysis, this approach decomposes the effect of treatment assignment into indirect 

effects that work through specified mediators and a direct effect that works through additional 

mediators that are unobserved. In doing so, the approach relaxes parametric assumptions that are 

commonly used for path analysis. However, like path analysis, the sequential ignorability 

approach requires the identification and measurement of a rich set of pre-treatment covariates to 

support the assumption that the observed covariates are sufficient to remove selection bias in 

estimates of the impact of the mediator on the outcome. The principal stratification approach 

does not require measuring and modelling all pre-treatment confounders (as does sequential 

randomization), or the exclusion restriction (as does instrumental variables). Instead it requires 

covariates and follow-up outcomes that adequately predict the potential values of sample 

members’ mediators. Moreover, principal stratification is more useful for identifying a direct 

effect of program assignment and thereby falsifying a mediation theory than it is for estimating 

parameters of a mediation process. 

 

 None of these approaches is perfect for all mediational analyses and all mediation 

analyses (short of randomizing specified mediators) require strong assumptions in order to 

estimate mediator effects. However, the assumptions required by these new strategies are less 

stringent than those required by conventional path analysis. Furthermore, despite the substantial 

difficulties of mediational analysis, we believe that it is essential for building a science of 

program design and development. However, knowing how to choose a method of mediational 

analysis under the varied conditions that exist in the practice of evaluation research is craft 

knowledge not yet fully or widely available. 
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Part V 

 

Final Remarks 

 

 Variation in program impacts upends conventional ways of analyzing and interpreting 

data from program evaluations. Among other things, it makes it possible to define (and estimate) 

different types of average impacts. For example, we can define a mean impact for the typical site 

from a population of sites or a mean impact for the typical person from a population of persons. 

These two parameters can differ and each can be valid for different purposes.  

  

 However any average becomes less informative as impact variation increases. 

Furthermore, understanding this variation becomes more important, and new questions arise such 

as: (a) by how much do impacts vary across individuals, subgroups of individuals and program 

sites? (b) what are the maximum and minimum site-specific program impacts? and (c) what is 

the cross-site correlation between program impacts and control group mean outcomes? We term 

the search for answers to these questions as learning “about” impact variation. 

 

 Variation in program impacts also provides opportunities for testing theories about why 

interventions do or do not work, for whom they work when they work, and under what 

conditions they work. Toward this end, we can pose theories to guide future data collection for 

explaining impact variation within and across program sites. We term such theory building as 

learning “from” impact variation. 

 

 Statistical methods for discovering and explaining impact variation are developing 

rapidly, and we have tried to provide a broad overview of new approaches. However, a great deal 

remains to be done, and we anticipate many new methodological breakthroughs during the next 

decade. 

 

 To promote this enterprise, the Spencer Foundation and the William T. Grant Foundation 

have joined together to sponsor a concerted three-year effort to develop new methodological 

approaches for studying impact variation and to undertake major empirical analyses of impact 

variation using existing data from multi-site trials in education and youth development. We are 

privileged to be leading this unique effort. In addition, the Institute for Education Sciences of the 

U.S. Department of Education is funding work by one of the present authors (Bloom) and his 

colleagues to use existing RCT datasets to explore empirically the amount of impact variation 

that exists and to examine some important implications of this variation.  

 

 This collaborative project will bring together teams of researchers from the firms that 

conducted most of these RCTs (MDRC, Mathematica Policy Research and Abt Associates Inc.) 

with methodologists from the University of Chicago, Stanford University, Harvard University 

and the University of Pittsburgh. These teams will assess the utility of current methods for 

answering questions about impact variation (including moderation and mediation), develop and 

test new methods where necessary, and produce usable tools to help others conduct these types 

of analyses. In addition, the team will consider sample size requirements and develop new 

methods for assessing statistical power to help aid the design of future multi-site trials. The core 

goals of the project are to build a capacity for studying impact variation and bring to light 
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important new substantive findings from existing RCTs. It is hoped that doing so will help to 

build a new research agenda for improving child, youth, and adult outcomes by better 

understanding which interventions work best, for whom, and under what conditions. 

 

 

References 

 

Abadie, A., M. Chingos and W. West (2014) “Endogenous Stratification,” (April). 

 

Angrist, J. D., Imbens, G. and Rubin, D.B. (1996). Identification of Causal Effects Using 

Instrumental Variables, Journal of the American Statistical Association, 91(434): 444-455. 

 

Bryk, A.S., & Raudenbush, S.W (1988). Heterogeneity of variance in experimental studies: A 

challenge to  conventional interpretations. Psychological Bulletin, 104, 3, 396 404. 

 

Bloom, H.S., Raudenbush, S.W., Weiss, M., and Porter, K. (2014). Using Multi-site Evaluations 

to Study Variation in Effects of Program Assignment. MDRC., New York. 

 

Burdick-Will, J., Ludwig, J., Raudenbush, S. W., Sampson, R. J., Sanbonmatsu, L., & Sharkey, 

P. (2011). Converging evidence for neighborhood effects on children’s test scores: An 

experimental, quasi-experimental, and observational comparison. Whither opportunity, 255-276. 

 

Dempster, A. P., Rubin, D. B., & Tsutakawa, R. K. (1981). Estimation in covariance components 

models. Journal of the American Statistical Association, 76(374), 341-353. 

 

Frangakis, C. E., & Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics, 

58(1), 21-29. 

 

Heckman, J., & Vytlacil, E. (1998). Instrumental variables methods for the correlated random 

coefficient model: Estimating the average rate of return to schooling when the return is 

correlated with schooling. Journal of Human Resources, 974-987. 

 

Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica: Journal of 

the econometric society, 153-161. 

 

Heckman, J. J., & Vytlacil, E. (2005). Structural equations, treatment effects, and econometric 

policy evaluation1. Econometrica, 73(3), 669-738. 

 

Holland, P. W. (1986). Statistics and causal inference. Journal of the American statistical 

Association, 81(396), 945-960. 

 

Holland, P. W. (1988). Causal inference, path analysis, and recursive structural equations 

models. Sociological methodology, 18(1), 449-484. 

 

Hong, G. (2015). Causal Inference in a Social World: Moderation, Mediation, and Spillover. 

New York: Wiley-Blackwell (To appear in 2015). 

41 

 



 

Hong, Guanglei and Takako Nomi (2012). Weighting methods for assessing Policy effects 

mediated by peer change.” Journal of Research on Educational Effectiveness special issue on the 

statistical approaches to studying mediator effects in education research, 5: 261-289. 

 

Imai, K., Keele, L., & Yamamoto, T. (2010). Identification, inference and sensitivity analysis for 

causal mediation effects. Statistical Science, 51-71. 

 

Katz, L. F., Kling, J. R., & Liebman, J. B. (2000). Moving to opportunity in Boston: Early results 

of a randomized mobility experiment (No. w7973). National Bureau of Economic Research. 

 

Kling, J. R., Liebman, J. B., & Katz, L. F. (2007). Experimental analysis of neighborhood 

effects. Econometrica, 75(1), 83-119. 

 

Lindley, D. V., & Smith, A. F. (1972). Bayes estimates for the linear model. Journal of the Royal 

Statistical Society. Series B (Methodological), 1-41. 

 

Louis, T. A. (1984). Estimating a population of parameter values using Bayes and empirical 

Bayes methods. Journal of the American Statistical Association, 79(386), 393-398. 

 

Neyman, J.S. (1923). On the applicability of probability theory to agricultural experiments: 

Essay on Principles, Section 9. Original Polish version appearing in Roczniki Nauk Rolniczych 

Tom X (Annals of Agricultural Sciences), 1923, 1-51; translated and edited by D.M. Dabrowska 

and T.P. Speed and published in Statistical Science, 1990, 5, 4, 465-480. 

 

Page, L.C., A. Feller, T. Grindal, L. Miratrix and M.A. Somers (under review) “Principal 

Stratification: A Tool for Understanding Variation in Program Effects across Endogenous 

Subgroups.” 

 

Pearl, J. (2001, August). Direct and indirect effects. In Proceedings of the seventeenth 

conference on uncertainty in artificial intelligence (pp. 411-420). Morgan Kaufmann Publishers 

Inc. 

 

Raudenbush, S. W. (1994). Random effects models. The handbook of research synthesis, 301-

321. 

 

Raudenbush, S.W. (2014). Random Coefficient Models for Multi-site Randomized Trials With  

Inverse Probability of Treatment Weighting. Department of Sociology, University of Chicago. 

 

Raudenbush, S.W. and Bryk, A.S. (2002). Hierarchical Linear Models (Second Edition). 

Thousand Oaks:  Sage Publications.  

 

Raudenbush, S.W., Reardon, S. and Nomi, T. (2012). Statistical analysis for multi-site trials 

using instrumental variables.  Journal of Research and Educational Effectiveness.  Vol. 5, No. 3, 

pp 303 – 332. 

 

42 

 



Reardon, S. F., and Raudenbush S. W. (2013). Under what assumptions do multi-site 

instrumental identify average causal effects?  Sociological Methods and Research. Vol. 42, 2:pp 

143-163. 

 

Reardon, S. F., Unlu, F., Zhu, P., & Bloom, H. S. (2013). Bias and Bias Correction in Multisite 

Instrumental Variables Analysis of Heterogeneous Mediator Effects. Journal of Educational and 

Behavioral Statistics, 1076998613512525. 

 

Robins, J. M., & Greenland, S. (1992). Identifiability and exchangeability for direct and indirect 

effects. Epidemiology, 143-155. 

 

Roy, A. D. (1951). Some thoughts on the distribution of earnings. Oxford economic papers, 3(2), 

135-146. 

 

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in 

observational studies for causal effects. Biometrika, 70(1), 41-55. 

 

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized 

studies. Journal of educational Psychology, 66(5), 688. 

 

Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. The 

Annals of Statistics, 34-58. 

 

Rubin, D. B. (1981). Estimation in parallel randomized experiments. Journal of Educational and 

Behavioral Statistics, 6(4), 377-401. 

 

Rubin, D. B. (1986). Comment: Which ifs have causal answers. Journal of the American 

Statistical Association, 81(396), 961-962. 

 

Rumberger, R. W. (1995). Dropping out of middle school: A multilevel analysis of students and 

schools. American educational Research journal, 32(3), 583-625. 

 

Spybrook, Jessaca (2013) “Detecting Intervention Effects Across Context: An Examination of 

the Precision of Cluster Randomized Trials,” The Journal of Experimental Education, DOI: 

10.1080/00220973.2013.813364. 

 

US Department of Health and Human Services. (2010). Head Start impact study. Final Report, 

3-39. 

 

VanderWeele, T. (2015). Explanation in Causal Inference: Methods for Mediation and 

Interaction. Oxford University Press (To appear in 2015).  

 

Weiss, M.J., Bloom, H.S., and Brock, T. (2014). “A Conceptual Framework for Studying 

Sources of Variation in Program Effects,”  Journal of Policy Analysis and Management, 

Summer. 

 

43 

 



VanderWeele, Tyler J. (2009). “Marginal Structural Models for the Estimation of Direct and 

Indirect Effects.” Epidemiology, 20, 18-26. 

 

Yau, L. H., & Little, R. J. (2001). Inference for the complier-average causal effect from 

longitudinal data subject to noncompliance and missing data, with application to a job training 

assessment for the unemployed. Journal of the American Statistical Association, 96(456), 1232-

1244. 

 

44 

 



 
  

45 

 



 
  

46 

 



 

 

 

  

47 

 



Appendix A: Characterizing the Impact of an Intervention on the Mean and Variance of 

Outcomes and Program Impacts for a Population of Individuals 

 

 It is often of interest to describe how an intervention affects the mean and variance of the 

outcome in a population of participants. The table below provides expressions for these 

parameters when the population consists of participants nested within each of 
*J  sites. Note that 

the between-site means and covariance parameters are weighted averages where the weights 

accorded each site is its population size. Here the potential outcomes for person i in site j are 

)0(ijY if assigned to the control group and )1(ijY  if assigned to the program group. The person-

specific causal effect is )0()1( ijijij YYB −= . All of the items in the table are estimable from data 

produced by a multi-site randomized trial. 
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Appendix B: Derivation of the HLM Estimator of the Cross-Site Mean and  

Variance of Program Impacts 

 

 A simple hierarchical linear model (HLM) for the cross-site mean and variance of 

program impacts begins with the idea that the site sample difference of mean outcomes 

jjj YYB 01
ˆ −= is an unbiased, (approximately) normally distributed estimator of the true site-

specific impact jB with variance )].1/()/[ 2

0

2

1

1

jjjj TTnV −+= − σσ  So the first-stage model says 

 

 ).,(~ˆ
jjj VBNB         (B1) 

 

However, the true impacts jB vary over sites according an exchangeable normal distribution 
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Hence the marginal distribution of the sample mean difference is 

 

 ).,(~ˆ 2

jj VNB +τβ         (B3) 

 

One can readily derive the score vector and Fisher information matrix for β  and
2τ conditional 

on jV  as shown by Raudenbush (1994), producing the pair of estimating equations at iteration 

m+1: 
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